EFFICIENT SEMI-SUPERVISED ANNOTATION WITH PROXY-BASED LOCAL CONSISTENCY PROPAGATION

1. Introduction

Background

- Automatic image annotation is an effective solution to manage images which increases tremendously.
- Semi-Supervised Learning (SSL), are promising to build more accurate models.
- Many graph-based SSL methods, which involves graph construction and label propagation, have been
- applied to image or video annotation.

Main Issues

- Most of Graph-based SSL don't consider the difference between the labeled and unlabeled data when learning the manifold.
- Most of Graph-based SSL face the limitation that learning must be performed in a batch mode.

Our Work

- Propose a novel label propagation algorithm named PLCP, in which the label information is first propagated from labeled samples to their unlabeled neighbors, and then spreads only among unlabeled ones like a spreading activation network.
- Propose an online semi-supervised framework and develop an incremental learning method for PLCP.

2. Proxy-Based Local Consistency Propagation

Notation

- A point set $\mathcal{X} = (\mathcal{X}_L, \mathcal{X}_U) = \{\mathbf{x}_1, \dots, \mathbf{x}_l, \mathbf{x}_{l+1}, \dots, \mathbf{x}_n\}$ • Points $\mathcal{X}_L = \{\mathbf{x}_1, \dots, \mathbf{x}_l\}$ are labeled $y_i \in \mathcal{L} = \{1, \dots, c\}$ • Predict the label of unlabeled points $X_U = \{\mathbf{x}_{l+1}, ..., \mathbf{x}_n\}$

Algorithm

Pairwise similarity Propagation iteratively $\bullet \quad w_{ij} = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{2}\right)$ • $\mathbf{F}_U(t+1) = \alpha \mathbf{S}_U \mathbf{F}_U(t) + (1-\alpha) \widehat{\mathbf{Y}}_U$ **Initial information: Converge to stable state** • $\mathbf{y}_i = \sum_{j=1}^l \delta\left(\mathbf{x}_i \in N(\mathbf{x}_j)\right) \cdot w_{ij} \mathbf{y}_j$ • Matrix form: $\widehat{\mathbf{Y}}_U = \mathbf{W}_{UL}\mathbf{Y}_L$

Object function

$$Q(\mathbf{F}_{U}) = \frac{1}{2} \left(\sum_{i,j=1}^{u} w_{ij} \| \frac{\mathbf{F}_{U}^{i}}{\sqrt{\mathbf{D}_{U}^{i}}} - \frac{\mathbf{F}_{U}^{j}}{\sqrt{\mathbf{D}_{U}^{j}}} \|^{2} + \mu \sum_{i=1}^{u} \| \mathbf{F}_{U}^{i} - [\mathbf{W}_{UL}\mathbf{Y}_{L}]_{i} \|^{2} \right)$$

Lei Huang^{*}, Yang Wang[†], Xianglong Liu^{*}, Bo Lang^{*} *State Key Lab of Software Development Environment, Beihang University, Beijing, China [†]National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China

 $\mathbf{F}^* = \lim_{t \to \infty} \mathbf{F}_U(t) = (1 - \alpha)(\mathbf{I} - \alpha \mathbf{S}_U)^{-1} \mathbf{\widehat{Y}}_U = (1 - \alpha)(\mathbf{I} - \alpha \mathbf{S}_U)^{-1} \mathbf{W}_{UL} \mathbf{Y}_L$

International Conference on Multimedia and Expo (ICME) 2013 San Jose, USA

Initially, all data are utilized to train the model in a semisupervised manner.

current predictor and shows the prediction to the user. as training data to retrain the model, which can update the

- $= \mathbf{F}_{U} + \mathbf{T}_{U} W_{U,new} \mathbf{y}_{new}$

Datasets	0
MNIST: 70K, 784D Pixel CIFAR-10: 60K, 384D GIST	8 9
CITAR-10. 00K, 304D 0151	6

8	5	/	3	9	8	l,	Ø	8	7
ๆ	8	8	3	ş	6	5	9	4	9
6	5	0	0	33	7	4	8	3	1

Conclusion

Achieve better accuracy and has a promising performance Satisfy the requirement of online real-time annotation

