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Abstract

Recent years have witnessed the success of hashing tech-

niques in fast nearest neighbor search. In practice many

applications (e.g., visual search, object detection, image

matching, etc.) have enjoyed the benefits of complemen-

tary hash tables and information fusion over multiple views.

However, most of prior research mainly focused on com-

pact hash code cleaning, and rare work studies how to build

multiple complementary hash tables, much less to adaptive-

ly integrate information stemming from multiple views. In

this paper we first present a novel multi-view complemen-

tary hash table method that learns complementary hash ta-

bles from the data with multiple views. For single multi-

view table, using exemplar based feature fusion, we approx-

imate the inherent data similarities with a low-rank matrix,

and learn discriminative hash functions in an efficient way.

To build complementary tables and meanwhile maintain s-

calable training and fast out-of-sample extension, an ex-

emplar reweighting scheme is introduced to update the in-

duced low-rank similarity in the sequential table construc-

tion framework, which indeed brings mutual benefits be-

tween tables by placing greater importance on exemplars

shared by mis-separated neighbors. Extensive experiments

on three large-scale image datasets demonstrate that the

proposed method significantly outperforms various naive

solutions and state-of-the-art multi-table methods.

1. Introduction

The explosive growth of the big data in recent years has

brought great challenges to the scalable similarity search.

Among the vast solutions, hash-based approximate nearest

neighbor (ANN) search has achieved attractive performance

in many applications like visual search [11, 15, 33, 38], ob-

ject detection [4], visual classification [25], recommenda-

tion [20] and image matching [1]. Locality-Sensitive Hash-

ing (LSH) [3, 14] pioneered the hashing research by in-

dexing similar data using similar hash codes, and achieves

large-scale search in a constant or sub-linear time. How-

ever, since the hash functions are randomly generated in

LSH, it usually needs long hash codes to reach a satisfacto-

ry performance. As indicated by the literature, the capabil-

ity of capturing the data structure has significant affects on

the performance of many tasks like retrieval and classifica-

tion [8,12,19,23,28,35]. Therefore, many traditional hash-

ing methods attempt to learn data-dependent hash functions

that preserve data neighbor structures, and pursue compact,

yet informative binary codes by utilizing the complemen-

tarity among hash functions [9,13,17,26,29,30,34,36,40].

Though the compact codes can achieve compressed s-

torage and efficient computation, they usually fail to sat-

isfy the practical requirement for a desired number of re-

trieved nearest neighbors. To address this problem, multi-

table methods have been studied to build several tables that

maximally cover the nearest neighbors by leveraging the ta-

ble complementarity [1, 4, 7, 11, 21, 24, 27, 37]. As the most

widely-used strategy, LSH-based multi-table can faithfully

balance recall and precision performance [1, 24, 31], work-

ing like multi-index hashing [27]. However, it often re-

quires a huge number of tables without eliminating the table

redundance. [37] proposed a sequential learning method to

build complementary hash tables, and obtained promising

performance with much less tables. [21] further studied the

general multi-table construction strategy using bit selection

over existing hashing algorithms.

Despite the aforementioned progress, most of these relat-

ed works still suffer from the lack of table complementarity

for the maximum coverage of nearest neighbors when us-

ing multiple tables. Moreover, their hash tables are usually

learned only from single type of data source. In real-life

applications many objects have a set of diverse and com-

plementary descriptors in the form of multiple views (e.g.,

images can be described by different visual descriptors like

SIFT and GIST) [5], and existing hashing research have

proved that adaptively combining them can help learn more

informative hash functions [16, 22, 32].

In this paper, we aim to learn complementary hash ta-
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bles that adaptively incorporates information from different

views. For each hash table, by exploiting the exemplar’s

sensitivity to the neighbor structure in each view, we adap-

tively fuse multiple features based on exemplars to capture

the meaningful nearest neighbors along the manifold. The

fused nonlinear feature mapping faithfully helps approxi-

mate the inherent data similarities with a low-rank struc-

ture, achieving fast computation for hash function learning

and out-of-sample extension. Furthermore, we propose a

novel exemplar reweighting scheme that sequentially learn-

s complementary tables by eliminating table redundancy in

a boosting manner. Such scheme amplifies importance of

exemplars shared by previous mis-separated neighbors, and

subsequently enlarges their similarities for new table learn-

ing without destroying the low-rank properties.

To our best knowledge, this is the first work that learns

multiple hash tables from multiple views for nearest neigh-

bor search, which simultaneously and adaptively exploits

multi-view information and table correlations. Owing to ex-

emplar based feature fusion and its reweighing scheme, the

proposed method is powerful to mutually capture the under-

lying neighbor structures using multi-view complementary

tables, and computationally feasible for large-scale learn-

ing and fast online search. Empirical study on several large

benchmarks highlights the benefits of our method, with sig-

nificant performance gains over the several state-of-the-art

hashing algorithms and multi-table methods.

The remaining sections are organized as follows. Sec-

tion 2 presents the multi-view hash function learning for

single hash table using the exemplar based feature fusion.

In Section 3 we provide the exemplar reweighing scheme

for the sequential complementary multi-table construction.

Comprehensive experiments on several large datasets are p-

resented in Section 4, followed by conclusions in Section 5.

2. Multi-View Hash Table

In this section, we first define notations that will be used

throughout this paper. Assume we are given a set of N train-

ing examples {xi}Ni=1 with M views. The data matrix in m-

th view can be represented as X(m) = [x
(m)
1 , . . . ,x

(m)
N ] ∈

R
dm×N , where dm is the feature dimension in this view.

Our goal is to build L multi-view complementary hash

tables {Tl}Ll=1, with B hash functions H = {hj(·)}Bj=1

learnt for each table Tl, where hj(·) : R
d → {−1, 1} is

a binary mapping.

To achieve this goal, next we will first present how to

learn single hash table from multiple views, and then study

the multiple complementary tables in next section.

2.1. Exemplars based Feature Fusion

In nearest neighbor search, it is rather critical to capture

the neighborhood structure underlying the data. Motivated
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Figure 1. Demonstration of the proposed multi-view complemen-

tary hash table method in the sequential learning framework.

by prior exemplar based approximation techniques [18], to

address this problem, we adopt a small set of K exemplars

(e.g., cluster centers) to adequately cover the data space, and

approximately measure the similarities among all N data

points with respect to them (See Figure 1). Formally, for

N data points in m-th view, K (K ≪ N ) exemplar points

U (m) = {u(m)
k ∈ R

dm}Kk=1 are employed to characterize

the inherent neighbor structures among the feature space.

Then each x
(m)
i in m-th view can be distinctively described

by its nearest exemplars, forming a new feature representa-

tion z
(m)
i , with its k-th element [z

(m)
i ]k determined based

on the similarity between x
(m)
i and k-th exemplar

[

z
(m)
i

]

k
=

δ
(m)
k K(x

(m)
i ,u

(m)
k )

∑K
k′=1 δ

(m)
k K(x

(m)
i ,u

(m)
k′ )

where δ
(m)
k ∈ {0, 1}: δ

(m)
k = 1 if and only if exem-

plar u
(m)
k is one of xi’s s-nearest (s ≪ K) exemplars in

U (m) according to the specified kernel function K(·, ·), e.g.,

Gaussian kernel as the typical one.

With the nonlinear transformation in each view, we adap-

tively fuse the multiple views of each data point by linearly

weighting and concatenating its M feature vectors as one

z∗i =
1

λ
[μr

1z
(1)
i ; . . . ;μr

Mz
(M)
i ], (1)

where λ =
∑M

m=1 μ
r
m (r > 1) is a normalizer and the nota-

tion “;” serves as a column-wise vector concatenation oper-

ator. The discriminative weight vector µ = [μ1, . . . , μM ]T,

satisfying μm > 0 and
∑M

m=1 μm = 1, balances the impor-

tance of each view and can be adaptively learnt.

Since each z(m) is highly sparse with s nonzero ele-

ments, the fused feature representation z∗ contains only sM
nonzero entries summing to 1. z∗ intrinsically provides a

powerful descriptor that approximate the data similarity in-

corporating multiple views. Denoting Z∗ = [z∗1, . . . , z
∗
N ]

and Λ = diag(Z∗T1), the similarities between N samples

can be defined by the following low-rank matrix:

S = Z∗Λ−1Z∗T, (2)

This can be further decomposed as

S =
1

λ

M
∑

m=1

μr
mŜ(m), (3)
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Algorithm 1 Learning Single Multi-View Hash Table.

1: Input: feature transformation Z(m) and the similarity

matrix Ŝ(m) of {xi}Ni=1, m = 1, . . . ,M ;

2: Initialize: the feature weights µ = 1
M 1;

3: repeat

4: Update the embedding Y and the hashing projection

vectors W according to (6);

5: Update the feature weights µ according to (8);

6: until Converge

7: Compute the hashing projection vectors W∗ and quan-

tize Y into binary codes Y∗ by solving (9);

8: Output: the hashing projection vectors W∗ and the

feature weights µ.

where each component Ŝ(m) actually is the similarity ma-

trix Ŝ(m) = Z(m)Λ(m)−1Z(m)T defined by the transforma-

tion Z(m) = [z
(m)
1 , . . . , z

(m)
N ] in m-th view, with Λ(m) =

diag(Z(m)T1). This fact indicates that the similarity in-

duced from our exemplar based feature fusion is equivalent

to the linear combination of corresponding approximated

similarities in each view.

2.2. Hash Function Learning

Based on the similarity matrix S we can learn B hash

functions H = {hj(·)}Bj=1 from multiple views for single

hash table. Specifically, if we have the hash code matrix

Y∗ = [y∗
1, . . . ,y

∗
N ]T ∈ {−1, 1}N×B , with each y∗

i =
[h1(xi), . . . , hB(xi)]

T as the generated hash code by H for

xi, the hash codes should minimize the following objective

satisfying balanced and uncorrelated constraints [19, 35]

minµ,Y∗
1
2

∑N
i=1

∑N
j=1 Sij‖y∗

i − y∗
j‖2

s.t. µ > 0, µT1 = 1
1TY∗ = 0, Y∗TY∗ = NIB×B .

(4)

The problem is a NP-hard with the discrete constraint on

Y∗. Fortunately, we can approximately solve it by first

relaxing binary codes Y∗ to real-valued embedding Y ∈
RN×B , and then alteratively optimizing Y and µ. Nex-

t, we list the main steps of the alternating optimization for

hash function learning of single multi-view table, given the

similarities among data.

Y-Update: When fixing the feature weights µ, the normal-

ization in Z∗ and S by λ will have no effect on the optimiza-

tion of projection Y. Without loss of generality we omit it

here. Problem 4 turns to a spectral decomposition problem

of a Laplacian matrix L = λIB×B − S [35]. Therefore,

the optimal Y should be the B eigenvectors of L with the

smallest eigenvalues except 0, which are also eigenvectors

of S associated with the B largest eigenvalues (ignoring λ):

maxY tr(YTSY)
s.t. 1TY = 0, YTY = NIB×B .

(5)

Directly optimizing the objective is considerably time-

consuming (O(N3)), since the decomposition of S cannot

be easily scaled up for large training sets. Fortunately, as in-

dicated by (2), S is sparse and low-rank, owing to our exem-

plar based feature fusion. Therefore, the B desired eigen-

vectors vb, b = 1, . . . , B can be easily obtained by solving

a much smaller matrix Λ−1/2Z∗TZ∗Λ−1/2, whose corre-

sponding eigenvalues σb satisfy λ > σ1 ≥ . . . ≥ σB > 0.

Denoting V = [v1, . . . ,vB ] and Σ = diag(σ1, . . . , σB),
we get the desired spectral embedding Y for Problem 5

Y =
√
NZ∗Λ−1/2VΣ−1/2 = Z∗W, (6)

where W = [w1, . . . ,wB ] with wb =
√

N/σbΛ
−1/2vb.

μ-Update: With Y fixed, Problem 4 turns to the following

problem with respect to µ:

minµ
∑M

m=1 μ
r
mtr(YT(IB×B − Ŝ(m))Y)

s.t. µ > 0, µT1 = 1
(7)

whose optimal solution is

μm =
tr(YT(IB×B − Ŝ(m))Y)1/(1−r)

∑M
m=1 tr(YT(IB×B − Ŝ(m))Y)1/(1−r)

. (8)

Here r adaptively balances the effect of multi-view feature

fusion. The strong complementarity among views indicates

a large r, which leads to close μm in the solution.

By alternatively repeating the above two update steps,

we can converge to the optimal Y and µ very fast.

Y∗-Update: Finally, the binary codes Y∗ can be efficient-

ly generated by quantizing Y into sgn(Y). However, this

may bring large quantization loss. For better and balanced

coding, we employ the following iterative quantization [9]:

minY∗,R ‖Y∗ −YR‖2F
s.t. Y∗ ∈ {−1, 1}N×B ,RTR = IB×B .

(9)

Subsequently, the hashing projection vectors turns to W∗ =
WR and the binary codes will be Y∗ = sgn(Z∗W∗).

As shown in Algorithm 1, the single multi-view table

learning can be interpreted as first nonlinearly transforming

features of each sample in multiple views to the exemplar-

based feature representation z∗, second linearly projecting

z∗ to y, and finally quantizing y into binary codes y∗.

Remark: The spectral embedding loss objective function

in 4 has shown promising power for discriminative bina-

ry codes learning capturing neighbor relations [19, 35]. S-

ince directly optimizing the objective is considerably time-

consuming, exemplar based approximation has been pro-

posed as a successful technique to scale up the learning in

the literature [18]. Along this direction, anchor graph based

hashing [19], as the most related work, show great capabil-

ity of large-scale compact code learning, and achieved en-

couraging performance for large-scale problems. However,
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for multiple hash tables, it is still far beyond both the adap-

tive information incorporation from multiple views and the

strong guarantee of table complementarity, which has been

addressed simultaneously by this work.

2.3. Out-of-Sample Extension

In Algorithm 1, the binary codes for the training data

can be learned at the training stage. Nevertheless, the ex-

plicit hash functions H = {hj(·)}Bj=1 are still required for

efficient out-of-sample extension in real-world application-

s. The fact that nearest neighbors usually share similar hash

codes motivates us to estimate the code of any new sample

based on their neighbors in the training set, and fortunate-

ly, using the following theorem we can guarantee that the

multi-view hashing process is explicitly equivalent to linear

hash functions, which can be directly and efficiently applied

to any new sample.

Theorem 1 Given K exemplar points U (m) = {u(m)
k }Kk=1

and μm ≥ 0 for m-th view, m = 1, . . . ,M , define a feature

map z : {Rd1 , . . . ,RdM } → R
KM with r > 1 for any

sample x as follows

z(x) = [μr
1z

(1)(x), . . . , μr
Mz(M)(x)]T

with z(m)(x) =
[δ

(m)
1 K(x(m),u

(m)
1 ),...,δ

(m)
K

K(x(m),u
(m)
K

)]
∑

K
k=1 δ

(m)
k

K(x(m),u
(m)
k

)
. Us-

ing the Nyström extension, the binary codes for x will be

y∗ = sgn(W∗Tz(x)).

The proof can be completed using the exemplar based fea-

ture fusion (please see the supplementary material). The

theorem states that for a new sample its hash code can be

generated simply by a composite operation: nonlinear fea-

ture map z(x), linear projection using W∗ and sgn bina-

rization, which implies explicit hash functions H: hj(x) =
sgn(w∗T

j z(x)), with w∗
j as the j-th column of W∗.

Now, we can summarize that by using the exemplar

based feature fusion the proposed multi-view hash table

can be learnt explicitly and efficiently at the offline train-

ing stage, and promises fast out-of-sample extension for any

new sample at the online searching stage.

3. Complementary Multi-View Tables

In practice, multiple tables complementary to each oth-

er together can considerably cover more nearest neighbors,

and thus be able to largely boost the overall search perfor-

mance [10, 37]. In the above section, we have presented

how to efficiently learn hash functions for single multi-view

hash table, which depends on a low-rank similarity matrix

induced from the exemplar based feature fusion. Howev-

er, as to building multiple complementary hash tables, two

critical problems are still left unsolved, i.e., the table com-

plementarity and the low-rank similarity. In this section, we

introduce our exemplar reweighting method that simultane-

ously addresses both problems by sequentially updating the

low-rank similarities in a complementary manner.

3.1. Table Complementarity

Motivated by the powerful ensemble learning [6], to

build complementary tables, our straightforward solution is

sequentially learning each hash table that can correct the

prediction errors of previous tables one by one.

We first define an overall Hamming distance Dl
ij be-

tween any points xi and xj over l hash tables as the global

criteria. Let D0
ij = 0, then

Dl
ij = min

k=1,...,l

∑

h∈Tk

‖h(xi)− h(xj)‖2. (10)

The distance definition should be consistent with the true

similarities among data, i.e., it will be small for the true

neighbors, and large for others.

Based on D we can predict the neighbor relations P of

l hash tables: Pij = de −Dl
ij on the neighbor pair xi and

xj , where de is an empirical Hamming radius. A larger Pij

indicates a true neighbor pair prediction between xi and xj .

In order to make the new hash table complementary to

previous ones, for each view the similarities on the incon-

sistent neighbor pairs will be amplified to incur greater con-

centration at next round. Formally, at the (l + 1)-th round

the similarity matrix Ŝ(m) of m-th view will be updated in

a boosting-like manner:

Ŝ
(m)
ij = Ŝ

(m)
ij exp(−α(m)Pij). (11)

Here α(m) = ln
∑

ij
I(Pij Ŝ

(m)
ij

<0)
∑

ij
I(Pij Ŝ

(m)
ij

>0)
with I(·) as a indicator

function. α(m) measures the overall prediction error of pre-

vious l tables in m-th view. The similarity updating guides

to build a hash table that corrects those previous mistakes

over the true nearest neighbors.

Although the sequential similarity update promises the

table complementarity, but it will lose the low-rank property

of the similarity matrix, and thus degenerates the efficiency

of hash function learning and out-of-sample extension for

each table using Algorithm 1. Next, we will give our exem-

plar reweighting scheme that addresses the low-rank sim-

ilarity updating problem by fully utilizing the exemplars’

sensitivity to the neighbor structure.

3.2. Exemplar Reweighting

Since exemplars in each view have great power to char-

acterize the neighbor relations among data, we further em-

ploy them to adjust their roles in the similarity approxi-

mation. Figure 1 illustrates the intuition of the exemplar

reweighing scheme, where if the true neighbors are wrong-

ly predicted (indicated by the red cross) by the l-th table,
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then the importance of the exemplars shared by these sam-

ples should be increased (displayed by the circle size) to

induce a larger similarity between them for the (l + 1)-th
table learning.

Following this intuition, for m-th view we subse-

quently calibrate the importance of each exemplar in the

nonlinear feature representation using weights π
(m) =

[π
(m)
1 , . . . , π

(m)
K ]T. Therefore, with Π(m) = diag(π(m))

the reweighted representation turns to

Ẑ(m) = Z(m)Π(m), (12)

which induces a new approximated similarity matrix

Z(m)Λ(m)−1Π(m)Z(m)T. To preserve the table comple-

mentarity, the optimal π(m) should force this similarity ma-

trix to be consistent with the desired one in (11):

minπ(m) ‖Z(m)Λ(m)−1Π(m)Z(m)T − Ŝ(m)‖2F . (13)

The above formulation is equivalent to a least square prob-

lem, whose solution can be efficiently obtained.

We normalize the updated feature transformation Ẑ(m)

Ẑ(m) = Γ−1Z(m)Π(m), (14)

where Γ = diag(Z(m)Π(m)1). The following theoretical

result further guarantees that with the updated similarity

based on exemplar reweighting in each view, we can se-

quentially learn hash functions for the multi-view comple-

mentary hash tables using Algorithm 1:

Proposition 1 Theorem 1 still holds when using the nonlin-
ear feature map based on exemplar reweighing:

z
(m)(x) =

[δ
(m)
1 π

(m)
1 K(x(m),u

(m)
1 ), . . . , δ

(m)
K

π
(m)
K

K(x(m),u
(m)
K

)]
∑

K

k=1 δ
(m)
k

π
(m)
k

K(x(m),u
(m)
k

)
.

Algorithm 2 summarizes our approach to constructing L
multi-view complementary hash tables {Tl}Ll=1, which en-

joys efficient multiple table learning and fast online search.

Please see the computational complexity analysis in the

supplementary material.

4. Experiments

In this section we will comprehensively evaluate the pro-

posed method named Multi-View Complementary Hash ta-

bles (MVCH for short). Since there is no related work re-

garding hash tables with multiple views in the literature, in

this paper we compare it to several naive solutions: state-of-

the-art well-known unsupervised hashing methods: Local

Sensitive Hashing (LSH) [3], Iterative Quatization (ITQ)

[9] and Anchor Graph Hashing (AGH) [19], multiple fea-

ture hashing methods: Multiple View Hashing (MVH) [16],

Multiple Feature Hashing (MFH) [32] and Unsupervised

Multiple Feature Kernel Hashing (UMFKH) [22], and mul-

tiple table construction methods Complementary Hashing

(CH) [37] and Bit Selection (BS) [21].

Algorithm 2 Learning Multi-View Complementary Hash

Tables (MVCH).

1: Input: the training set {xi}Ni=1 with M views, the ex-

emplars U (m), m = 1, . . . ,M ;

2: Initialize: the feature representations Z(m) by (1), the

similarity matrix Ŝ(m) by (1), and D0
ij = 0;

3: for l = 1 to L do

4: Compute the exemplar weights π
(m) for each view

by solving (13);

5: Update feature representations Ẑ(m) by (14);

6: Optimize projection vectors W∗ and feature weights

µ using Algorithm 1 with input Ẑ(m) and Ŝ(m);

7: Build hash table Tl using W∗ and the nonlinear fea-

ture map z(·) in (10) and (15);

8: Update Dl
ij and Ŝ

(m)
ij by (10) and (11);

9: end for

10: Output: multi-view complementary tables {Tl}Ll=1.

Among the baselines, only CH and BS can exploit mul-

tiple complementary hash tables, guaranteeing that the true

nearest neighbors missed from one hash table are more like-

ly to be found in other tables, and meanwhile only MVH,

MFH and UMFKH can adaptively incorporate information

from multiple features. Since baselines like LSH, AGH,

MVH, MFH and UMFKH initially aim to learn compact

hash codes, to build multiple tables respectively using these

methods we generate a desired number of hash function-

s and evenly partition them into different tables following

Multi-Index Hashing [27]. For LSH, AGH, CH and BS that

cannot originally support multiple views, we simply con-

catenate the features of different views as one.

4.1. Datasets and Protocols

Multiple hash tables have been widely applied to near-

est neighbor search in many areas including image search

[11,37], object detection [4] and image matching [1]. With-

out loss of generality, we evaluate our method on image

search, where three popular large image datasets: CIFAR-

10 (60K), TRECVID (260K) and NUS-WIDE (270K) are

adopted in our experiments. For simplicity and similar to

prior multiple feature work [16,32], we adopt different type-

s of visual features for each set as the distinct views to verify

the efficiency and effectiveness of our proposed method.

CIFAR-10 contains 60K 32 × 32 color images of 10

classes and 6K images in each class. For each image, we

extract 300-D bag-of-words (BoW) quantized from dense

SIFT features and 384-D GIST feature.

TRECVID [39] is a large-scale image dataset built from

the TRECVID 2011 Semantic Indexing annotation set with

126 fully labeled concepts, from which we select 25 most-

frequent concepts. For each image, we extract 512-D GIST

feature and 1000-D spatial pyramid bag-of-words feature.
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Table 1. Hash table lookup performance of different multi-table methods on CIFAR-10, TRECVID and NUS-WIDE.

METHODS
RH2 PH2

L = 1 L = 4 L = 8 L = 16 L = 1 L = 4 L = 8 L = 16
C

IF
A

R
-1

0

LSH 0.71 ±0.11 2.67 ±0.16 5.06 ±0.48 9.07 ±0.25 14.67 ±0.51 15.25 ±0.27 15.01 ±0.35 14.71 ±0.19

AGH 3.15 ±0.17 4.53 ±0.17 5.63 ±0.16 7.59 ±0.18 20.10 ±0.32 18.28 ±0.14 16.66 ±0.13 14.97 ±0.11

ITQ 3.49 ±0.19 5.86 ±0.28 7.68 ±0.20 10.81 ±0.15 19.60 ±0.38 16.98 ±0.33 15.92 ±0.28 15.04 ±0.19

MFH∗ 4.68 ±0.49 - - - 22.67 ±0.12 - - -

MVH 1.58 ±0.03 1.43 ±0.02 2.31 ±0.02 4.03 ±0.02 20.54 ±0.07 15.08 ±0.08 12.94 ±0.04 11.72 ±0.03

UMFKH 1.10 ±0.07 1.98 ±0.18 3.02 ±0.07 4.50 ±0.04 19.24 ±0.70 15.53 ±0.44 14.15 ±0.17 12.76 ±0.07

CH 0.71 ±0.03 3.46 ±0.15 5.66 ±0.16 8.73 ±0.33 20.06 ±0.38 19.33 ±0.41 19.06 ±0.37 18.47 ±0.40

BS 3.05 ±0.55 5.80 ±0.56 7.90 ±0.57 10.68 ±0.59 16.18 ±0.26 15.31 ±0.34 15.01 ±0.32 14.44 ±0.23

MVCH 5.55 ±0.20 9.18 ±0.28 11.19 ±0.31 13.32 ±0.39 26.21 ±0.78 25.02 ±0.75 24.38 ±0.69 23.76 ±0.59

T
R

E
C

V
ID

LSH 1.23 ±0.38 4.78 ±0.52 7.64 ±0.40 12.25 ±0.19 22.93 ±0.92 22.67 ±0.93 22.36 ±0.88 22.06 ±0.75

AGH 4.75 ±0.64 5.67 ±0.70 6.15 ±0.66 7.09 ±0.59 22.97 ±0.42 22.70 ±0.44 22.39 ±0.47 21.77 ±0.48

ITQ 4.26 ±0.23 8.02 ±0.61 10.90 ±0.69 11.66 ±0.77 23.99 ±0.44 22.89 ±0.55 22.22 ±0.36 21.71 ±0.31

MFH 1.96 ±0.23 3.73 ±0.26 6.57 ±0.52 9.93 ±0.66 23.11 ±0.27 20.75 ±0.34 19.19 ±0.35 18.42 ±0.40

MVH 0.73 ±0.03 0.55 ±0.03 0.82 ±0.03 1.36 ±0.03 22.77 ±0.79 21.16 ±0.62 19.47 ±0.49 18.39 ±0.43

UMFKH 0.36 ±0.03 0.99 ±0.07 1.61 ±0.12 2.00 ±0.06 23.81 ±0.52 22.23 ±0.24 21.46 ±0.19 19.44 ±0.13

CH 0.43 ±0.01 3.61 ±0.44 6.10 ±0.45 8.92 ±0.61 24.13 ±0.83 22.89 ±0.26 22.14 ±0.26 21.45 ±0.39

BS 2.66 ±0.39 5.80 ±0.64 8.87 ±1.26 13.02 ±0.93 23.65 ±0.33 22.75 ±0.28 22.40 ±0.30 21.99 ±0.30

MVCH 5.07 ±1.20 9.09 ±0.77 10.94 ±0.86 12.77 ±0.94 24.46 ±0.62 23.86 ±0.56 23.59 ±0.57 23.34 ±0.58

N
U

S
-W

ID
E

LSH 0.38 ±0.07 1.29 ±0.08 2.82 ±0.26 5.46 ±0.29 30.32 ±1.01 30.23 ±1.15 30.15 ±1.53 29.71 ±1.52

AGH 1.31 ±0.04 1.79 ±0.07 2.12 ±0.07 2.82 ±0.09 34.34 ±2.21 32.27 ±2.14 30.62 ±1.89 28.82 ±1.65

ITQ 2.01 ±0.30 4.51 ±0.68 6.25 ±0.27 8.11 ±0.43 33.36 ±1.36 30.05 ±1.00 28.63 ±1.65 28.46 ±1.29

MFH 0.32 ±0.01 0.57 ±0.01 0.87 ±0.01 1.44 ±0.01 34.50 ±0.79 30.55 ±0.53 28.14 ±0.48 26.51 ±0.45

MVH 0.15 ±0.01 0.32 ±0.01 0.60 ±0.01 1.15 ±0.01 32.63 ±1.08 26.82 ±0.67 25.36 ±0.58 24.57 ±0.53

UMFKH 0.31 ±0.01 0.94 ±0.18 1.35 ±0.17 1.63 ±0.04 36.46 ±0.73 29.71 ±0.28 28.03 ±0.40 26.26 ±0.44

CH 0.22 ±0.00 3.14 ±0.03 5.18 ±0.21 7.33 ±0.22 36.23 ±1.63 32.96 ±1.52 33.12 ±1.28 32.69 ±1.43

BS 0.77 ±0.02 1.84 ±0.01 3.01 ±0.04 5.44 ±0.18 33.17 ±1.75 30.25 ±1.02 29.48 ±0.84 29.30 ±0.87

MVCH 2.17 ±0.17 4.18 ±1.03 6.02 ±1.07 8.95 ±1.15 35.67 ±1.06 34.88 ±1.03 34.60 ±1.45 34.29 ±1.59
∗ We didn’t get a reasonable performance by tuning parameters of MFH on CIFAR-10 when using multiple hash tables. Similar results are shown in Figure 2.

NUS-WIDE [2] comprises over 269,000 images with 81

ground truth concept tags, of which we only consider 25

most frequent tags (’sky’, ’animal’, etc.). Besides, multi-

ple visual features have been provided already in this set,

and we select three presentative features: 128-D wavelet

texture, 225-D block-wise color moments and 500-D SIFT-

based BoW histograms.

For each dataset, we construct a training and a testing

set respectively with 5,000 and 3,000 random samples. The

groundtruth for each testing query is defined as those sam-

ples in the database with at least one common label as the

query. Since we manually selected complementary features,

a large r can achieve satisfying performance, and we empir-

ically set r = 12 in all experiments. For AGH and MVCH

using exemplar based feature transformation, we employ

300 exemplars generated by k-means clustering.

There are two common hashing search schemes in the

literature: (1) Hamming distance ranking: all points in the

database are ranked according to the Hamming distances

from the query, and then the top ranked samples are returned

as the retrieved results. (2) Hash table lookup: a lookup ta-

ble is constructed using the binary codes, and points falling

within certain Hamming radius from the query codes are

returned as retrieved results. To comprehensively evalu-

ate multiple table construction methods, we extend the two

search schemes for multiple table search. The former ranks

all candidate points according to their Hamming distances

over all tables to the query defined in (10), while the later

retrieves points indexed in the buckets of all tables with-

in certain Hamming radius from the query code. Usually

a small searching radius (we use 2, i.e., de = 2) is used

to avoid the expensive computation stemming from com-

binatorial explosion [19]. To suppress the randomness, all

experimental results are reported by averaging over 10 runs.

4.2. Multi-Table Search Evaluation

Instead of simply concatenating multiple features as one

in traditional hashing algorithms, multiple feature hash-

ing algorithms like MVH, MFH and UMFKH consider

the complementary relations between different views when

learning hash functions. However, for multiple tables they

still fail to exploit the mutual benefit between tables. The

proposed multi-table construction method adaptively com-

bines features of multiple views using the exemplar based

feature fusion, and meanwhile avoids the table redundance

by sequentially reweighting anchors in each feature space.

To verify this point, we respectively build a differen-

t number of hash tables using different methods. Prior

research indicates that for a balanced search performance

the optimal number of hash functions in each table should

be close to log2 N for N points [27, 31]. Therefore, for

CIFAR-10, TRECVID and NUS-WIDE, we respectively

choose 16, 18 and 18 hash functions for each hash ta-

ble. Next, with this setting we will comprehensively evalu-

ate these construction methods in terms of both hash table

lookup and Hamming distance ranking.

4.2.1 Hash Table Lookup

Building several hash tables can activate more buckets from

multiple tables in the searching process, and thus locate

more true nearest neighbors, which subsequently improves

the recall performance. However, in traditional multi-table

methods, it usually cannot guarantee (even sharply reduces)

the search accuracy due to a large portion of false positive

and redundant results.
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Figure 2. Average precision using Hamming distance ranking on CIFAR-10, TRECVID and NUS-WIDE.

Table 1 lists the hash table lookup results, i.e., preci-

sion and recall within Hamming radius 2 (PH2 and RH2 for

short), comparing the proposed method MVCH with other

baselines on the three datasets. It can be observed that the

recall performance of AGH using 1-16 hash tables increas-

es from 3.15% to 7.59%, but the precision decreases from

20.10% to 14.97%. A similar phenomenon is also observed

when using MVH. This is because that these native solu-

tions ignore the effect of redundancy between tables. In-

stead, CH, BS and our MVCH relieve the degeneration by

simultaneously learning informative tables and enhancing

their complementarity.

On CIFAR-10, though the precision of MVCH, as well

as LSH and CH, reduces slightly when using more hash ta-

bles, but by comparing their recall we can find that CH and

MVCH can significantly boost the performance when us-

ing more hash tables, which indicates that both methods

eliminating table redundance are able to build hash tables

that widely cover more true neighbor pairs. Compared with

existing multi-table methods CH and BS over LSH that e-

qually treat each type of feature, our MVCH can further ex-

ploit discriminative information from multiple sources by

adaptively determining the importance of each view, and

thus achieves much higher performance than CH and BS in

terms of both recall and precision, up to e.g., 52.58% recall

and 28.64% precision gains using 16 hash tables.

The results on TRECVID and NUS-WIDE further verify

the fact that though building multiple tables can improve the

recall performance, it usually sharply reduces the search ac-

curacy (especially using CH, MFH and MVH) due to the ir-

relevant and redundant points contained in the results. This

is also true for most baselines, mainly due to that these na-

tive solutions do not eliminate the effect of table redundan-

cy. On the contrast, our MVCH gets higher precision and re-

call rate by relieving such degeneration using multiple com-

plementary hash tables. Moreover, MVCH further exploit-

s the complementarity between different views to discover

the inherent neighbor structure, and thus outperforms CH

and BS consistently using a different number of tables.

Figure 4 reports the training and search time per query

using different methods on CIFAR-10. MVCH spends a lit-

tle more time than others on offline training (but less than

BS and close to CH). However, since in practice usually on-

ly tens of hash tables are required, it is quite beneficial that

MVCH can get significant performance gains without cost-

ing much more training time. Besides, MVCH can achieve

fast online search using almost the same time as baselines

including linear, nonlinear and multi-view hashing.

4.2.2 Hamming Distance Ranking

Besides hash table lookup, Hamming distance ranking is

another widely employed search technique without explicit-

ly building multiple tables, owing to its fast implementation

using binary operations.

Figure 2 plots the average precision (AP) at certain cut-

ting point of the returning list using Hamming distance

ranking on three datasets. From the figure, we can easily

observe that our MVCH, simultaneously incorporating both

multiple features and the coupled hash tables, consistently

achieves the best performance over different types of base-

lines in all cases. For instance, on CIFAR-10, TRECVID

and NUS-WIDE MVCH using 16 tables, it gets 24.33%,

11.19% and 24.67% precision gains over the best competi-

tor CH or BS among all baselines. Moreover, the proposed

method slightly increases its overall performance in terms

of both recall and precision when using more hash tables,

while most of the others decrease. More experimental re-

sults can be found in the supplemental material.

4.3. The Exemplar Effect

The proposed method builds complementary hash tables

utilizing the fact that the exemplars show sensitivity to the

neighbor structures: (1) the exemplar based feature fusion,

adaptively incorporating information from multiple views,

helps efficiently learn discriminative hash functions for each

table; (2) the calibrated exemplars accurately capture the

similarity updates and thus induce the complementarity be-

tween tables. Besides the above comparison with naive so-

lutions, next we will study the effect of the two characteris-

tics of our method by varying the algorithm settings.
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Table 2. Hash table lookup performance of the proposed MVCH with different settings on CIFAR-10.

SETTINGS
RH2 PH2

L = 1 L = 4 L = 8 L = 16 L = 1 L = 4 L = 8 L = 16
F1 2.96±0.09 4.16±0.10 5.16±0.12 6.97±0.13 16.62±0.24 15.52±0.15 14.42±0.10 13.28±0.08

F1+ER 2.96±0.09 3.44±0.12 3.92±0.13 5.05±0.19 16.62±0.24 16.50±0.23 16.40±0.24 16.17±0.22

F2 3.29±0.23 4.75±0.25 5.83±0.23 7.75±0.23 24.99±0.58 22.11±0.54 19.39±0.39 16.71±0.25

F2+ER 3.29±0.23 4.41±0.20 5.32±0.35 6.46±0.35 24.99±0.58 24.53±0.48 24.14±0.38 23.64±0.35

F1F2 3.12±0.17 4.40±0.21 5.42±0.21 7.28±0.21 19.94±0.20 18.04±0.16 16.31±0.17 14.62±0.14

F1+F2+ER 5.55 ±0.20 9.18 ±0.28 11.19 ±0.31 13.32 ±0.39 26.21 ±0.78 25.02 ±0.75 24.38 ±0.69 23.76 ±0.59

4.3.1 On Feature Fusion

To illustrate the benefits from exemplar based feature fu-

sion, on CIFAR-10 we compare our method with different

settings (but all with exemplar reweighting, ER for short):

using exemplar based fusion of two views (“F1+F2+ER”,

i.e., the standard MVCH in Sec. 4.2), and using single

view: BoW (“F1+ER”) or GIST (“F2+ER”). Table 2 report-

s PH2 and RH2 of these methods using hash table lookup.

It can be observed that GIST feature shows more promis-

ing performance than BoW feature, and meanwhile sim-

ply concatenating multiple features as one (“F1F2”) hardly

captures the most useful information from multiple sources

(See results using one table where ER hasn’t been activat-

ed). Figure 3 shows the precision using Hamming distance

ranking of different methods, where we can obtain the simi-

lar observation that feature fusion without considering their

correlations even performs worse than single view. How-

ever, in both evaluation our method achieves the best per-

formance with significant gains in all cases. This indicates

that MVCH can faithfully exploit the meaningful neighbor

structures along manifolds of multiple views.

4.3.2 On Table Complementarity

To further investigate the exemplars’ effect on table com-

plementarity, we respectively compare the performance of

MVCH with the following settings: using single view

without ER ( i.e., “F1” and “F2”) and with ER (i.e.,

“F1+ER” and “F2+ER”), using two views fused based on

direct concatenation (“F1F2”) and that based on exemplars

(“F1+F2+ER”). Note that when only building one table

from single view without ER, MVCH can be regarded de-

generated to AGH [19]. By comparing the performance of

these methods listed in Table 2, we can observe that building

more hash tables increases the recall performance of “F1”

and “F2”, but sharply lowers their precisions. Figure 3 fur-

ther proves our observation that those methods without sup-

pressing the redundance among tables decrease their preci-

sion when using more hash tables. Instead, the proposed

exemplar reweighting strategy in “F1+ER” and “F2+ER”

enables their multiple tables together to cover more true

neighbors, and thus significantly boosts the search perfor-

mance balancing both precision and recall. Moreover, both

Table 2 and Figure 3 demonstrate that our MVCH can build

complementary tables and achieves the best performance

by simultaneously integrating both adaptive multiple fea-

ture fusion and exemplar reweighting.
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Figure 3. Hamming distance ranking performance of MVCH using

different settings on CIFAR-10.
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Figure 4. Training and search time (per query) of different multi-

table methods on CIFAR-10.

5. Conclusion

We first presented a complementary hash table construc-

tion method that learns hash tables by adaptively incorporat-

ing information from multiple views. The exemplar based

feature fusion was first introduced to capture the inherent

neighbor structures among data by linearly combining the

nonlinear feature transformation in each view. Based on

the feature fusion, for single table the proposed method ef-

ficiently learns discriminative hash functions with multiple

views. For complementary hash tables, a boosting manner

with an exemplar reweighting scheme is applied to reduc-

ing the table redundance. Besides the discriminative pow-

er of multiple tables, the proposed method also enjoys ef-

ficient learning and fast code generation for unseen sam-

ples. Comprehensive evaluation on large-scale benchmarks

demonstrates its good practicability and performance. Fu-

ture work can further concentrate on the theoretical analysis

of the table complementarity and optimal parameters.
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