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ABSTRACT

Semi-supervised learning and active learning are important
techniques to build more accurate model while labeled data
are scarce. The objective of this paper is combining both to
effectively relieve user labor for multi-class annotation. We
propose a novel graph-based active semi-supervised learn-
ing framework which aim at efficiently learning a multi-class
model with minimal human labor. In particular, we pro-
pose Minimize Expected Global Uncertainty algorithm to ac-
tively select examples (for labels), which naturally integrates
with the probabilistic results of graph-based semi-supervised
learning. Meanwhile, we update the model incrementally by
decomposed formulation while the new example are incor-
porated for training, which only has the time complexity of
O(n), compared to the original re-training of O(n3). Ex-
tensive evaluations over three real-world datasets demonstrate
that our proposed method has the superior performance com-
paring with the baselines and the capability to efficiently build
more accurate model with fractional human labor.

Index Terms— Semi-supervised learning, active learn-
ing, multi-class classification, image annotation

1. INTRODUCTION

Given the explosion of the digital images in real world, it is
necessary to collect, classify, organize them using an easy,
fast and efficient way. Automatic image annotation plays a
crucial role in providing feasible solutions via building statis-
tical model, which can significantly reduce the human labor
for labeling the images manually. However, to build statistical
model, the labeled training examples are essential and indis-
pensable. How to build more accurate model with as few as
labeled examples?

Semi-Supervised Learning(SSL) [1] and active learning
[2] are potential solutions for this problem. SSL is designed
to improve the generalization ability of the supervised learn-
ing by the leverage of unlabeled examples. Typical SSL
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methods include self-training, co-training, transductive SVM,
graph-based methods [3, 4], etc. As an important branch of
SSL, Graph-Based SSL (GB-SSL) methods have been widely
adopted for image or video annotation [5, 6, 7, 8]. Active
learning learns a model in an interactive way, which is able to
select the most representative data based on the model learned
in each iteration. It has been widely explored in multimedia
community [9, 10, 11, 12] for its capability of reducing hu-
man labor.

Since SSL and active learning are important techniques
when labeled data are scarce, how to effectively combining
both is meaningful. Song et al [13] proposed an active learn-
ing method based on co-training in video annotation. Zhu et
al [14] proposed an active learning approach based on a GB-
SSL method, in which the reduction of expected risk of label-
ing each sample can be predicted without retraining the clas-
sification model. Jiang et al [7] developed a graph-based SSL
method for video concept detection and used active learning
to select data-concept pairs for human annotation. Among the
previous methods, almost all are in a transductive setting [15]
where the model only predicts the given unlabeled training
data, and is not required to make predictions outside. Besides,
most methods only consider the binary-class problems.

Different from the conventional methods, we propose
a novel graph-based active semi-supervised learning frame-
work which can efficiently learn a multi-class model with
minimal human labor and work in an inductive setting [15],
in which the newly collected unlabeled examples can be pre-
dicted and utilized to train the model incrementally. Consid-
ering that most GB-SSL methods can naturally provide the
probabilistic outputs, which is convenient to measure the un-
certainty of all unlabeled examples, we therefore adopt the
uncertainty measurement. For a certain unlabeled example, if
we incorporate it along with its assumed label (It can be em-
pirically evaluated based on the current model predictor.) and
re-train the model, which can make the new predictor have
most confidence, then we should select this example to query
the user for label. Based on this intuition, we propose an ac-
tive learning algorithm, namely Minimize Expected Global
Uncertainty (MEGU). Besides, we propose an method to up-
date the model incrementally by means of the decomposed
formulation and weighted neighbors assignment, which has



the time complexity of O(n), compared to the original re-
training of O(n3).

To summarize, we highlight the main contributions of our
work:

• We propose a novel graph-based active semi-
supervised learning framework which can efficiently
learn a multi-class model with minimal human labor
and work in an inductive setting.

• We propose Minimize Expected Global Uncertainty
(MEGU) algorithm to actively select example, which
naturally combine the probabilistic outputs of GB-
SSL methods. Extensive evaluations over three large
datasets demonstrate the superior performance.

• We propose an incremental model updating method,
which has the time complexity of O(n), compared to
the original re-training of O(n3).

2. GRAPH-BASED ACTIVE SEMI-SUPERVISED
LEARNING FRAMEWORK

We propose a novel graph-based active semi-supervised
learning framework which is amenable to efficiently learn a
multi-class model with minimal human labor. Figure 1 illus-
trates the overall framework.

Initially, we have a handful of randomly selected labeled
examples and abundant unlabeled examples referred to as the
offline example pool. Optionally, we also consider the sit-
uation that a web crawler can ceaselessly collect unlabeled
examples referred to as the online example pool. We adopt
GB-SSL to propagate the label information to the offline ex-
ample pool. Thus, we have an initial classification model. If
we want to make model more accurate , we can use the active
learning algorithm to select the most informative examples to
query the user for labels from the offline example pool or on-
line example pool and incorporate the selected examples for
training. Particularly, we propose Minimize Expected Global
Uncertainty algorithm to select the examples and update the
model incrementally, which will be elaborated on.

2.1. Label propagation

Given data points set χ = {x1, ..., xl, xl+1, ..., xl+n} where
xi ∈ Rd. The first l points χL = {x1, ..., xl} are la-
beled yi ∈ L = {1, ..., c} and the remaining points χU =
{xl+1, ..., xl+n} are unlabeled. The goal is to predict the la-
bel yj(l + 1 ≤ j ≤ l + n) of the unlabeled points.

Let F denote the set of (l+n)×cmatrices. A matrix F =
[FT1 , ...,F

T
l+n]T ∈ F is a vectorial function F : χ→ Rc which

assigns a vector Fi to each point xi. The label matrix Y =
[YT1 , ...,Y

T
l+n]T is described as Y ∈ R(l+n)×c with Yij = 1

if xi is with label yi = j and Yij = 0 otherwise.
GB-SSL mainly involves two main components: graph

construction and label propagation. A typical assumption

Fig. 1. Illustration of our graph-based active semi-supervised
learning framework. Initially, the GB-SSL model is learned
with randomly selected labeled examples and offline example
pool. Then, we select the most useful examples iteratively
from the offline example pool or online example pool for the
user labeling and update the model with the new labeled ex-
amples.

used in GB-SSL is that nearby points are likely to have the
same label. Following Zhou’s method [4] with slight differ-
ence that we fix the given labels for labeled examples, our
label propagation method can be described as follows:

1. Form the affinity matrix W with its entries wij =

exp(−‖xi−xj‖2
2σ2 ) if i 6= j and wii = 0.

2. Construct the normalized Laplacian Matrix S =

D−
1
2 WD−

1
2 , in which D is a diagonal matrix with its

(i, i)-element equal to the sum of the i-th row of W.

3. Iterate F(t+1) = αSF(t)+(1−α)Y until convergence,
where α is a parameter in (0, 1). Let F∗ denote the limit
of the sequence F(t), which has a closed solution form
as :

F∗ = lim
t→∞

F(t) = (1− α)(I− αS)−1Y (1)

4. We can assign each point xi ∈ χU with the label yi =
arg maxj≤c F∗ij .

2.2. Inductive setting

Most GB-SSL methods are only for the transductive setting,
in which the test examples must be provided before doing
the expensive training. For a new test example, it is obli-
gate to execute the algorithm again for predicting the label of
the example. The time cost is O(n3), which is not practica-
ble. Therefor we extend our methods to inductive setting, in
which the new test example can be predicted directly by the



learned function F rather than retaining the model. Following
[15]’s method, we fix the graph on χL∪χU and for a new test
point, we propose an induction scheme as follows:

Fx =

∑
i∈χL

⋃
χU
wxiFnomi∑

i∈χL

⋃
χU
wxi

(2)

where for i ∈ χL, Fnomi = Yi. For i ∈ χU , Fnomi is the
normalized value of Fi. Then we assign the test point with
label yx = argmaxj≤c Fxj .

2.3. Active learning

By means of the label propagation algorithm, we can get the
probabilistic outputs F (normalizing it if necessary) for all the
unlabeled examples (including offline example pool and on-
line example pool). If we want to boost the performance of
our model by acquiring another labeled examples, the main
issue is how to select most valuable examples to query the
oracle (the user) for labels. There exists many sample se-
lection criteria including risk reduction, uncertainty, diversity
and so on [11]. For the conventional methods, most criteria
are used to measure the unlabeled example(s) itself (them-
selves) which will be selected to query the oracle. Differently,
we consider a global uncertainty. If we add a new example
with its assumed label to retrain the model, which can make
the new predictor have most confidence over all the unlabeled
examples, then we should select this example to query the or-
acle for label. Based on this intuition, we propose Minimize
Expected Global Uncertainty (MEGU) algorithm to actively
select examples.

2.3.1. Minimize expected global uncertainty

We formalize our method as follows. Let ΩU denote the un-
labeled examples set (To simplify the notation, we don’t dis-
tinguish offline example pool and online example pool unless
it is necessary.) and ΩL the corresponding labeled examples.
Let YU = {Yi}ni=1 be the class membership random variables
on ΩU . P (YU |ΩL,ΩU ) is the underlying class conditional
probability distributions. Since P (YU |ΩL,ΩU ) is unknown,
we begin by assuming that we can estimate it with the label
propagation algorithm above in Sec 2.1. We hence have:

P (YU |ΩL,ΩU ) ≈ F (3)

We use entropy to measure the uncertainty of a random
variable and we assume Yi are independent. So the global
uncertainty can be calculated as:

H(F) =

n∑
i=1

H(Yi) = −
n∑
i=1

c∑
j=1

Fij log2 Fij (4)

If we select an unlabeled example xk to query the oracle and
we receive the assumed label yk, adding (xk, yk) to the train-
ing set and retraining, we will get the new predictor F+(xk,yk).

Algorithm 1 Minimize Expected Global Uncertainty
1: Input: ΩL,ΩU , normalized Laplacian Matrix S;
2: Initialize F using formula (1);
3: for each round k do
4: for each example xk′ ∈ ΩU do
5: for each possible label j ∈ {1, 2, ...c} do
6: Compute F+(x

k
′ ,j) with ΩL ∪ {(xk′ , j)}

7: Compute H(F+(x
k
′ ,j)) using formula (5)

8: end for
9: Compute H(F+x

k
′ ) using formula (6)

10: end for
11: Find xk based on (7)
12: Query xk for label yk
13: Add (xk, yk) to ΩL, remove xk from ΩU
14: Update F with the new ΩL
15: end for
16: Output: ΩL and F .

The estimated global uncertainty will also change:

H(F+(xk,yk)) = −
n∑
i=1

c∑
j=1

F+(xk,yk)
ij log2 F+(xk,yk)

ij (5)

In fact, we don’t know the true label yk before we query the
oracle. So we empirically assume the label yk = j is given
with the probability Fkj . Hence the expected global uncer-
tainty is:

H(F+xk) =

c∑
j=1

FkjH(F+(xk,j)) (6)

We greedily select the example xk that minimizes the ex-
pected global uncertainty to query the oracle, which can be
formulated as:

xk = arg min
x
k
′∈ΩU

H(F+x
k
′ ) (7)

We name it Minimize Expected Global Uncertainty algo-
rithm, which is summarized in Algorithm 1.

2.3.2. Incrementally update

From Algorithm 1, we can find that in each round, we need
compute the updated F+ with (n·c+1) times where n denotes
the number of unlabeled examples and c denotes the number
of classes. If we use formula (1) to compute F+, which has
the time complexity of O(n3), it is not practicable. We pro-
pose an incremental model updating method which reduces
the O(n3) to O(n).

For simplicity, we denote T = (1− α)(I− αS)−1. If the
selected example xk is from offline example pool and its given
label is yk = j, we can use the decomposed formulation as :

F+ = T(Y + ek · eTj ) = F + Tek · eTj (8)



(a) transductive accuracy (b) inductive accuracy

Fig. 2. The classification accuracy on USPS dataset. Ini-
tially, 10 labeled examples are used to train the model. In
each round, one example is selected iteratively for acquiring
label and incorporated to retrain the model. (a) shows the
transductive accuracy; (b) shows the inductive accuracy.

(a) transductive accuracy (b) inductive accuracy

Fig. 3. The classification accuracy on MNIST handwritten
digits dataset. Initially, 10 labeled examples are used to train
the model. In each round, one example is selected iteratively
for acquiring label and incorporated to retrain the model.

We only need to update the j-th column of F with the incre-
ment ∆F.j = T.k. which only has the time complexity of
O(n).

If the selected example xk is from online example pool
and its given label is yk = j, we follow [8]’s method with
slight changes. The label information of selected example is
propagated to itsKUL neighbors {xm}KUL

m=1 ⊆ {χU , χL}with
normalized weightwnomkm , which can be calculated as follows:

wnomkm =
exp(−‖xk−xm‖2

2σ2 )∑
xm∈N(xk) exp(−

‖xk−xm‖2
2σ2 )

(9)

According to formula (8), we can update the j-th column of F
with the increment as:

∆F.j =
∑

xm∈N(xk)

wnomkm · T.m (10)

where N(xk) represents the KUL nearest neighbors of xk.
The computational cost include finding the N(xk) and updat-
ing F.j with formula (10), which has the time complexity of
O(KUL · n). Generally, KUL is a constant and extremely
small. Hence the time complexity is O(n)

2.3.3. Computational cost

Although we proposed an method to update F incremen-
tally which dramatically reduce the complexity to O(n), the
MEGU algorithm still has the complexity ofO(c2 ·n2) in each
round which is not practical for large dataset. For reducing
the computational cost further, the possibility strategy is only
using the subset of ΩU . In particular, we only use randomly
sampled subset Ωsub with size m to select the examples. The
trick reduces the O(c2 · n2) to O(c2 ·m · n), which is linear
to n. The subsequent experiment empirically shows that it is
practical for real-world scenario.

3. EXPERIMENTS

In this section, experiments were conducted extensively over
three real-world datasets to demonstrate the effectiveness of
our proposed methods.

3.1. Baselines and evaluation criteria

For comparison, We have implemented Random example se-
lection (Random), Maximize Entropy-Based (MEB) selection
[10], Best-versus-Second-Best (BvSB) [10] and Minimize the
Risk (Risk) [14]1 as baselines. We partition all the examples
into labeled training set χL , offline example pool χU and
online example pool χT 2. We consider both transductive set-
ting and inductive setting. The criteria to compare the perfor-
mance include the accuracy on offline example pool (trans-
ductive accuracy) and the accuracy on online example pool
(inductive accuracy). For graph based SSL methods, trans-
ductive accuracy measures the propagation effect, and induc-
tive accuracy measures the generalization ability.

3.2. Datasets

The datasets include USPS dataset from the UCI repository3,
MNIST handwritten digits recognition dataset4 and Flower-
102 object categories dataset5.

USPS: We use the subset of USPS as [3] does. It has
10 classes with unbalanced class sizes. We sampled 3,000
examples as offline example pool and the rest 1,000 exam-
ples as online example pool. We randomly sampled 10 ex-
amples among offline example pool as initial labeled training
set. The digits were preprocessed to reduce the size of each
image down to a 16×16 grid, with pixel values ranging from
0 to 255.

1The algorithm described in [14] is only for binary-class classification,
and we extend it for multi-class classification.

2The main difference between χU and χT is that χU is the unlabeled
examples which are used for training the model initially while χT is the new
test examples.

3http://archive.ics.uci.edu/ml/datasets.html.
4http://yann.lecun.com/exdb/mnist/.
5http://www.robots.ox.ac.uk/ vgg/data/flowers/102/.



(a) transductive accuracy (b) inductive accuracy

Fig. 4. The classification accuracy on Flower-102 dataset.
Initially, 10 labeled examples are used to train the model. In
each round, one example is selected iteratively for acquiring
label and incorporated to retrain the model.

Table 1. Quantitative comparison between MEGU and Ran-
dom for the number of labeled examples required to achieve
certain accuracy on MNIST and USPS dataset (online exam-
ple pool).

accuracy dataset #MEGU #Random
80% USPS 19 75
85% USPS 40 154
80% MNIST 16 46
85% MNIST 25 75
90% MNIST 42 178

MNIST: MNIST is a 10-class handwritten digits dataset,
which has a training set of 60,000 examples, and a test set of
10,000 examples. We use randomly sampled 10,000 exam-
ples as offline example pool and the official test set as online
example pool. We randomly sampled 10 examples among of-
fline example pool as initial labeled training set. Each exam-
ple is a 28×28 image and is represented by a 784 dimensional
vector with values ranging from 0 to 255.

Flower-102: It consists of 102 flower categories. Each
class consists of between 40 and 258 images. We randomly
selected 12 classes (e.g. rose, lotus, hibiscus, wallflower etc.)
to construct a 12-class dataset with 1963 images. We sam-
pled 1463 images as offline example pool and the rest 500
images as online example pool. We also randomly sampled
10 images among offline example pool as initial labeled train-
ing set. We extracted dense-sift feature [16], then constructed
1500-D bag-of-words feature via k-means and hard assign-
ment for each image.

3.3. Experiment results

3.3.1. Active learning

In this experiment we compared our proposed MEGU method
with the Random, MEB, BvSB and Risk over the three
datasets above. For all methods, we use label propagation al-

Table 2. Time cost of using subset, compare to the original
MEGU and Random methods. Noting that MEGU-n indicates
the method that using the randomly sampled subset of size n.

method time cost (s)
MEGU-100 2.5
MEGU-500 12.8
MEGU-1000 25.7
MEGU 103
Random 0.024

gorithm described on Section 2.1 to get an initial model, then
iteratively select the example for label and incorporate it with
the given label to retrain the model. In each round, we evalu-
ate the classification accuracy. For Random, the accuracy was
averaged over 50 independent runs. Below are the parameters
and the adopted values for each dataset: for USPS dataset,
The value of parameter σ is set to 380 empirically [3] and we
set α = 0.89 after fine tuning. For MNIST and Flower-102,
we set σ = 380, α = 0.89 and σ = 21.5, α = 0.09 respec-
tively after fine tuning.

Figure 2, 3 and 4 show classification accuracy on USPS,
MNIST and Flower-102 dataset respectively. Given the same
size of labeled examples, our proposed MEGU method gives
a significantly improved performance compared to Random,
MEB and BvSB. Particularly in the initial rounds, MEGU
achieved a rapid growth in performance, which demonstrates
that MEGU can effectively find the most valuable examples in
perspective. Compared to Risk method, MEGU also achieves
better performance, especially on Flower-102 dataset. The
likely reason is that when calculating the expected global un-
certainty or the empirical risk, MEGU considers all possible
classes that samples belongs to while Risk only considers the
most confident class. Comparing (a) with (b) of Figure 2, 3
and 4, we can find that for all methods, the inductive accura-
cies and trasductive accuracies are approximately equivalent.
Besides, they have a nearly identical trend with the round in-
creases, which strongly suggests that our proposed method
for predicting and incorporating newly examples is effective.

Besides, we find that MEB has a worse performance than
Random. The likely reason is that for graph-based methods,
the samples near the classification boundary are not impor-
tant, compare to SVM-based methods. Especially when la-
beled samples are scarce, the samples near the classification
boundary may make worse effects due to the label propaga-
tion.

3.3.2. Reduction in annotation

In this experiment, we quantify the number of labeled exam-
ples required for achieving certain accuracy (e.g. 85%) on
online example pool comparing MEGU to Random. The ex-
perimental setup is identical to Section 3.3.1. The result can



(a) transductive accuracy (b) inductive accuracy

Fig. 5. Classification accuracy of using subset, compared to
the original MEGU and Random methods. MEGU-n indi-
cates the method that using the randomly sampled subset of
size n.

be found in Table 1. We can find that MEGU dramatically
reduce the number of labeled examples required for achiev-
ing the same accuracy compared with Random. Besides,
the results empirically demonstrate the significant advantages
of our proposed graph-based active semi-supervised method
when require minimal labeled examples to train the accurate
model. For example, we only need 42 labeled examples on
MNIST training set for building a classification model, which
can achieve 90% accuracy for classifying the official test set.

3.3.3. Using subset

In this experiment, we compared the effects of selecting ex-
amples only from the subset of the available unlabeled exam-
ples. We implemented all methods using MATLAB, running
on an 8 GB, 8 core machine with each core at 2.13 GHz. The
experimental setup is identical to Section 3.3.1 and the re-
sult is evaluated on USPS dataset over 10 independent runs.
Figure 5 and Table 2 show the accuracy and time cost respec-
tively. We can find that using subset method has an approx-
imately equal performance compared to the original MEGU,
and achieves quite higher accuracy than Random. The time
cost is linear to the size of subset. It is worthy noting that
MEGU-100 only costs 2.5s while achieves a comparable ac-
curacy than the original MEGU, which is practical for real-
world scenario.

4. CONCLUSION

In this paper, we propose a novel graph-based active semi-
supervised learning framework which can efficiently learn a
multi-class model with minimal human labor (Our method
achieved 90% accuracy on MNIST dataset with only 42 la-
beled examples.). Besides, our proposed MEGU algorithm
has superior performance over three real-world datasets com-
paring with the baselines. Furthermore, we also proposed
improved method for efficiency and the comprehensive ex-
periments empirically show that our method is practical for

real-world scenario.
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