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ABSTRACT

Semi-supervised learning methods can largely leverage the
image annotation problem using both labeled and unlabeled
data, especially when the labeled information is quite lim-
ited. However, most of them suffer the expensive computation
stemming from the batch learning on large training dataset. In
this paper we proposed a highly efficient semi-supervised an-
notation approach with the partial label propagation based on
the graph representation. Specifically, the label information is
first propagated from labeled samples to the unlabeled ones,
and then spreads only among unlabeled ones like a spread-
ing activation network. Our approach takes advantage of the
decomposed formulation to achieve a fast incremental learn-
ing instead of the expensive batch one without accuracy loss.
Extensive evaluations over two large datasets demonstrate the
superior performance of the proposed method and its signifi-
cant efficiency.

Index Terms— Image annotation, label propagation,
semi-supervised learning, incremental learning

1. INTRODUCTION

Digital images have grown rapidly in recent years. The de-
mand for effective solutions to manage images is increasing
tremendously. Automatic image annotation is crucial to un-
derstanding image semantic concepts for storage, indexing
and retrieval purposes. For most approaches of automatic im-
age annotation, statistical models are usually built from man-
ually labeled samples, and then the labels are assigned to un-
labeled samples utilizing these models. However, this process
faces a major problem that labeled data is often insufficient so
that its distribution may not be able to well approximate that
of the entire data set, which usually leads to inaccurate anno-
tation results.

Semi-Supervised Learning (SSL) methods [1], by lever-
aging unlabeled data with certain assumptions, are promis-
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ing to build more accurate models than those purely super-
vised methods. Typical SSL methods include self-training,
co-training, transductive SVM, graph-based methods [2], etc.
As an important family of SSL, graph-based methods have
gained much attention in the past few years. Graph-based
SSL define a graph which reflects the similarities among sam-
ples. It mainly involves two main components: graph con-
struction and label propagation. Blum and Chawla [2] regard
semi-supervised learning as a graph min-cut problem which is
equivalent to the mode of a Markov random field with binary
labels (Boltzmann machine). The Gaussian random fields
and harmonic function method is a continuous relaxation to
the discrete Markov random fields [3]. It can be viewed as
a quadratic loss function with infinity weight and a regular-
izer based on the standard graph Laplacian [4]. The local
and global consistency method [5] uses the normalized graph
Laplacian and a classifying function sufficiently smooth with
respect to the intrinsic structure revealed by the labeled and
unlabeled points. In recent years, most of the literature fo-
cuses on studying the graph construction method [6, 7, 8].
Few works discuss the strategy of label propagation.

Our work mainly focuses on the strategy of label propa-
gation and incremental learning. Different from the conven-
tional methods that propagate the label information over the
whole data set utilizing all effects among samples, we propose
a novel label propagation algorithm named Proxy-based Lo-
cal Consistency Propagation (PLCP). We assume the labeled
samples should keep their labels unchanged [2, 3]. Thus the
labeled samples shouldn’t be affected mutually when label in-
formation propagates in the graph. Based on this intuition,
we consider that the label information can be only propa-
gated from labeled samples to unlabeled ones, namely the
edges between them in the graph should be directed. Fig. 1
shows our propagation framework, where each labeled sam-
ple propagates the label information to its unlabeled neigh-
bors (proxies), and then the proxies spread the information
among the unlabeled samples mutually until a steady state is
reached. Since each labeled data initially propagates its label
to more than one unlabeled neighbors (proxies), our approach
can be intuitively understood as increasing the labeled data
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Fig. 1. The mixed graph constructed from data set with both
labeled and unlabeled samples. The triangles, circles and
squares represent three classes. The label information is first
propagated from labeled samples to the proxies (regarded as a
directed graph), and then spreads only among unlabeled ones
(regarded as an undirected graph).

when performing propagation over the unlabeled data.

Many graph-based SSL methods have been applied to im-
age or video annotation [9, 10, 11, 12]. However, most of
them face the limitation that learning must be performed in a
batch mode, which means that they require the training data
set to be available all at once [13] and need a full retraining
procedure when newly labeled samples emerge. Andrew et
al. [14] propose an online learning algorithm for manifold
regularization solved by a convex programming with stochas-
tic gradient descent in kernel space. However it only achieves
asymptotic zero-regret guarantee. Since our approach sup-
presses the mutual effect among labeled points, it can achieve
fast incremental learning without accuracy loss through the
decomposed formulation.

To summarize, we highlight here the main contributions
of our work:

e We propose a novel label propagation algorithm named
PLCP, in which the label information is first propagated
from labeled samples to its unlabeled neighbors, and
then spreads only among unlabeled ones like a spread-
ing activation network [15].

e We propose an online semi-supervised framework and
develop an incremental learning method for PLCP in
which the newly added labeled samples can be effi-
ciently used to update our annotation model.

e Our experiments show our algorithm has a promising
performance and is quite efficient for online learning.

The remaining sections are organized as follows. Section
2 elaborates on the algorithm design and its interpretation. We
propose a semi-supervised online learning framework and de-
sign the incremental learning algorithm for PLCP in Section
3. In Section 4, comprehensive experimental results are pre-
sented to demonstrate the effectiveness and efficiency of our
approach. Finally Section 5 concludes this paper.

2. METHODOLOGY

First we describe the notation used in this paper. Given a point
set X = (X1, XU) = {X1, -, X, Xj 41, -, X, } Where x; € R%.
The first [ points xr, = {x1,...,X;} are labeled y, € L =
{1, ...,c} and the remaining points xy = {X;41,...,X, } are
unlabeled. The goal is to predict the label yj(l +1<j5<n)
of the unlabeled points.

Let F denote the set of matrices n x ¢ with non-negative
entries. A matrix F = [F7, ...,F,TL]T € F is a vectorial
function F : x — R® which assigns a vector F; to each
point x;. The label matrix Y = [Y7,...,Y2]7 is described
as Y € R™*° with Y;; = 1if x; is with label y; = j and
Y;; = 0 otherwise.

2.1. Algorithm

A typical assumption used in graph-based SSL is that nearby
points are likely to have the same label. As the basis of la-
bel propagation, pairwise similarity measure is necessary for
graph-based SSL methods. We use the pairwise similarity be-
tween samples as:

i — %11
g ) (1

Our algorithm mainly focuses on the label propagation.
We assume that the labeled data points shouldn’t be affected
mutually when label information propagates in the graph, so
the label information can be only propagated directly from
labeled points to unlabeled ones. Our algorithm can be de-
scribed by two stages. At the first stage, the labeled samples
view their neighbors as proxies which receive the label infor-
mation. At the second stage, the proxies spread information
among the unlabeled samples mutually until a steady state is
reached.

Stage 1: The labels are propagated from the labeled points
to the unlabeled ones. To reduce the propagation error, we
propose to propagate the label information from each labeled
point to its K, nearest neighbors which are unlabeled. For
each unlabeled point X; € X, its initial label information y,
can be calculated by

w;; = exp(—

l

i =Y 6(xi € N(x;))wi;y; 2
j=1

where (z) is the indicator function that returns 1 if x is true,

otherwise 0. X; € N (x;) represents that X; is one of the K1,

nearest neighbors of x;. For convenience, we denote Y;, =

vi,...y7 1", Yu = [y/1, - ¥Ei]", so formula (2) can be

expressed in a matrix form as:

Yo = WyoYy (3)

where Wy, € R“*!, whose entries w;; can be calculated
by formula (1) if x; € N(x;) otherwise 0. u is the size of
unlabeled data set and u + [ = n.



Stage 2: The label information spreads only among un-
labeled points. At first, we form the affinity matrix Wy
whose entries w;; can be calculated according to formula
(1) if (¢ # j) otherwise 0. Then we construct the matrix
Su = Dy, *WyDy, . in which Dy is a diagonal matrix with
its (i, i)-element equal to the sum of the i-th row of Wy;. Sim-
ilar to F, we denote Fy = [(F(,)7, ..., (F%)T]T € Fy, which
is a vectorial function Fy; : xy — R€, and then we can cal-
culate it iteratively as follows:

Fu(t+1) = aSyuFu(t) + (1 - a)Yu )

where « is a parameter in (0, 1). Formula (4) can be un-
derstood intuitively in terms of spreading activation networks
where each unlabeled point receives the label information
from its unlabeled neighbors (first term), and also receives
the label information from labeled ones (second term) which
can be regarded as external inputs.

Let F* be the limit of the sequence {Fy (¢)}. We can as-
sign each point x; € xy with label y; = arg max;<. F}; .

Following previous work [5], it is easy to show that se-
quence {Fy (¢)} converges with Fi;(0) = Yy. Hence

= lim Fy(t) = (1 - a)(1- aSy) 'Yy
—00

=(1-a)I—-aSy) *WyLYr (3)

Our approach can be represented as a mixed graph G =
(x, E'), which consists of a set of vertices, denoted by y =
(xr, xv) and asetof edges F = Ery |J Eyy, where Epy C
XL X Xu is a set of directed edges, Eyy C xuy X Xy is a set
of undirected edges. The label information is first propagated
from labeled samples to the unlabeled ones, and then spreads
only among unlabeled ones like a spreading activation net-
work, as shown in Fig. 1.

2.2. Formulation and interpretation

Here we develop a regularization framework for the above
iteration algorithm. The cost function associated with Fy; is
defined to be

1 F! F’
=3 > wijll—= |2
ij=1 Dy \/D},
Lo i
Z ¥y, —

where [M]; represents the i-th row vector of matrix M and
w > 0 is the regularization parameter. D7; represents the (i,
i)-element of Dy;. Then the classifying function is

Wor YLl (6)

F* =arg min Q(Fy) @)
Fy€ery

intuitively, the first term of Q(Fy) is the smoothness con-
straint, which means that a good classifying function for un-
labeled points should not change too much between nearby

points. The second term is the fitting constraint, which means
a good classifying function for unlabeled points should not
change too much from the assignment of the labeled points.
The trade-off between these two competing constraints is cap-
tured by a positive parameter fi.

Differentiating Q(Fy) with respect to Fy;, we have

0Q

=Fy — SuFy + u(Fy —WypYy)
8FU

Because Q(Fy ) is convex, we can get F* by solving - OQ =
So we have

—SuF* 4+ w(F* =Wy Yr) =0
which can be transformed into

(I - OzSU)F* = (1 - Q)WULYL

where a = ﬁ Since (I — aSy) is invertible, we have

F* = (1—01)(1—04SU)71WULYL (®)

which recovers the same expression of formula (5).

2.3. Related works and discussions

It is worth noting that our approach is similar to Gaussian
Fields and Harmonic Functions (GFHF) [3], in which the
graph regularizer based loss function is defined as:

n

l
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QUF) =5 > wijl[F; —Fj|* + 00y [Fi = Yil|*

ij=1 i=1

where Y; is the i-th row vector of Y. However there are some
differences between GFHF and our approach. GFHF uses
standard graph Laplacian as the smoothness regularizer while
our approach uses the normalized one. GFHF constructs the
undirected graph to propagate mutually over the whole data
set. However when computing the harmonic solution, GFHF
fixes the labeled points with the given label values. Our ap-
proach uses a directed propagation from labeled data to unla-
beled ones when fixing the labeled points.

Our approach is also similar but different to Local and
Global Consistency (LGC) [5], whose regularizer is proposed
as:

1

Q(F) 5 Z ”H\/i

Zjl

fn? £ Z IF: — Y

where D = diag(d;) defined as d; = > 7, w;;. LGC
doesn’t fix the labeled points with the given label values and
allow them be changed by using the normalized Laplacian
among all data. It considers the mutual effect among labeled
points while our approach suppresses the negative effect. Our
approach fixes the labeled points and propagates the label in-
formation from labeled points to unlabeled ones.
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Fig. 2. Illustration of our online semi-supervised annotation
framework. Initially the model is learned using labeled and
unlabeled data and we can generate the label of the unlabeled
data and the predictor. For a new image, we can predict its
label through the predictor. If the user confirms the label of
the image, we can add the new data to the training data set and
retrain the model, which updates the label of the unlabeled
data and the predictor.

3. INCREMENTAL LEARNING

In this section, we propose an online learning framework and
develop an incremental learning algorithm for PLCP.

3.1. Online semi-supervised annotation framework

We propose an online semi-supervised annotation framework
for image annotation (Fig. 2):

1. Given some labeled data points {x,Y.} and large
scale unlabeled points x, the model is learned uti-
lizing both labeled and unlabeled data in a semi-
supervised manner. So we can get the predicted labels
Fy of the unlabeled data x; initially.

2. For a new image X, the system makes prediction
f,,e. using its current predictor and shows the predic-
tion to the user.

3. Ifthe user confirms the label y,, .., (Xnew; Ynew) Should
be treated as training data to retrain the model, which
can update the label information of the unlabeled data
and the predictor.

Different from Andrew’s work [14], which uses both the
newly labeled and unlabeled data, our proposed online semi-
supervised annotation framework only relies on labeled data
in online updating process. Most SSL methods learn in a
batch mode, which can not satisfy the requirement of on-
line real-time annotation [13]. Some may support learning
in an incremental mode, but suffer from accuracy loss [14].
However, our approach PLCP doesn’t lose accuracy in online

updating process by taking advantage of the decomposed for-
mulation. Next we will elaborate on it.

3.2. Incremental learning

For convenience, we denote Tyy = (1—a)(I—aSy) L. Given
a new labeled data point (Xnew, ¥,,er )» WE add it to the train-
ing data set and retrain the model. For x; € Xy, its new
predicted label information Fy; can be calculated by :

U =TuWur, Wonew) - Y1, Yhewl”

= FU + TU WU,newynew (9)

where WU,new = {lerl,newa ~~~wn,new}, and Wi new (l +1 <
i < n)can be calculated by formula (1) if X; € N(Xpew)
otherwise 0. It is worth noting that Ty is a constant and
we can calculate and store it in the initial step. We can de-
compose formula (9) as a more concise form. We denote
A = Wy newYpew and A € R™*¢. For multi-class annota-
tion, we know y,..,, € (0,1)¢ and only one nonzero element
yﬁfe)w = 1(1 < j < ¢) exists which means X,,,, only has
label j. So for A, only the j-th column is nonzero. We denote
itas A ;. Then we only need to update the j-th column of Fys
with an increment AF'[} =TyA,.

For incrementally adding m new labeled data (xas, Yas),
we can get the similar result:

v =Fu+TuyWynYy (10)

where Wy € R**™, whose entries w;; can be calculated
by formula (1) if x; € N(x;) otherwise 0.

Based on AF'[} = TyA ;, we can know that the time
complexity is O(m x u?), which is lineal to m and greatly
enhances the efficiency.

4. EXPERIMENT

In this section, we give a set of experiments to evaluate our ap-
proach. We validate the effectiveness of our PLCP for semi-
supervised classification, including digits recognition and im-
age annotation, compare to k nearest neighbor (kNN) algo-
rithm, Gaussian Fields and Harmonic Functions (GFHF) [3]
and Local and Global Consistency (LGC) [5]. We also eval-
uate the efficiency of PLCP in an online mode. In all exper-
iments, we evaluate the transductive accuracy on unlabeled
data and we report the averaged performance of 10 runs to
suppress the randomness.

4.1. Digits recognition

We adopt MNIST ! consisting of 70k 28 x 28 handwritten
digits images for digits recognition. Considering the limita-
tion of both computing ability and memory quantity, we ran-
domly sampled 10k samples as our data set. Each image is

"http://yann.lecun.com/exdb/mnist/
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Fig. 3. The accuracy of digit recognition with MNIST hand-
written digits dataset. The size of unlabeled data set is 10k.
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Fig. 4. Robustness to different values of in PLCP. The hori-
zontal axis represents the different value of , and the vertical
axis is the total recognition accuracy value. The size of ran-
domly labeled data set is set to 10, 50, 100, 150, 200 respec-
tively.

represented by a 784 dimensional vector with the raw values
ranging from 0 to 255.

We compared our method to kNN, GFHF coupled with the
Class Mass Normalization (CMN) and LGC. The k in kNN
was set to 1, which is the optimal value according to our ob-
servation. In our method and LGC, the affinity matrix was
constructed by using kNN with k set to 100 empirically. The
width of RBF kernel was set to the max value of the pairwise
distances and the diagonal elements of affinity matrix were
set to 0. The value of parameter o was simply selected from
the optimal value of range (0.09, 0.99) with interval 0.1. Ky,
was empirically set to 40. It should be noticed that for GFHF,
since the classification result is very sensitive to the width of
RBF kernel, we selected the optimal value after fine tuning.

Fig. 3 shows the results comparing our method with three
baselines. It can be observed that (1) all methods increase
their performances with more labeled samples; (2) our PLCP
achieved better accuracy than all the other methods, espe-
cially when 20-150 samples were available.
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Fig. 5. The accuracy of image annotation with CIFAR-10
dataset for 5,000 test data sampled.

We also studied the sensitivity of parameter « in PLCP.
The results are shown in Fig. 4. We can find that the accu-
racy maintains a stable value with a little disturbance when
a € (0.01,0.91). For @ € (0.91,0.99)), the accuracy re-
duces dramatically. This is because that the unlabeled sample
receives more label information from the unlabeled ones in
PLCP. Thus we can find that as long as the ratio of the la-
bel information from the labeled samples is not too small (for
example, 1 —a > 0.1)), the PLCP has good and stable results.

4.2. Image annotation

In this experiment, we investigated the task of image anno-
tation using the CIFAR-10 data set > , which consists of 60k
32 x 32 color images in 10 classes, such as airplane, automo-
bile, bird, etc. We extracted 384 dimensional GIST feature
for each image [16]. To build the test data set, we randomly
sampled 5000 data points from the whole data set.

Fig. 5 shows the results comparing our method to kNN,
GFHF and LGC. In kNN, we set the optimal value k=5. The
affinity matrix was constructed in a way similar to that of Sec-
tion 4.1. The value of parameter o was set to 0.19. From
Fig. 5, we can find that our PLCP outperforms all the other
methods significantly. For all labeled set size, the mean ac-
curacy of PLCP has an improvement of 9.57%, 40.59% and
3.62% over kNN, GFHF and LGC respectively. We can find
that GFHF has a poor performance in this dataset. The likely
reason is that the data points don’t live on a single manifold
and GFHF is very sensitive to it.

4.3. Incremental learning

In this experiment, we compare the computation time of In-
cremental PLCP (PLCP-INC) with PLCP, GFHF and LGC.

2http://www.cs.toronto.edu/ kriz/cifar.html



Table 1. Computational cost of GFHF, LGC, PLCP and

PLCP-INC in the online annotation mode.
k-th PLCP | GFHF| LGC | PLCP-INC
round | time(s) time(s)| time(s) time(s)
k=1 17.30 | 8.48 21.83 0.0605
k=2 17.61 | 10.10 | 27.20 0.0640
k=3 17.79 | 11.50 | 34.14 0.0572
k=4 18.16 | 13.18 | 42.08 0.0595
k=5 18.28 | 15.45 | 51.02 0.0588
k=6 18.36 | 19.22 | 60.92 0.0651
k=7 18.65 | 21.40 | 72.49 0.0588
k=8 19.11 | 24.12 | 85.22 0.0609
k=9 19.78 | 28.11 | 99.53 0.0645
k=10 | 20.07 | 31.57 | 115.17 0.0589

The difference between PLCP-INC and PLCP should be no-
ticed, namely PLCP-INC utilizes the formulation decomposi-
tion as described in Section 3.2 when the model is retrained
and PLCP doesn’t. We implemented all methods using MAT-
LAB in a 2.13GHz server. All data were sampled from
MNIST dataset. It is worth noting that our PLCP-INC doesn’t
lose accuracy compared with PLCP, so here we omit the ac-
curacy comparison.

The size of test set (unlabeled data) is 5000. All param-
eter were set to the same value as Section 4.1. We simulated
the online annotation procedure by incrementally providing
the labeled training data as a sequence {Al;,i = 1,2,...,T}.
That is to say, at the k-th round, the newly labeled data Al
is provided, Al and all the previous labeled data {Al;,i =
1,2, ...,k — 1} will be treated as the new training set. We set
the size of incremental labeled data |Al; = 500| and the total
number of rounds T=10.

The computational cost of all compared methods is listed
in Table 1. (PLCP-INC initially needs to calculate Ty on the
test set, which cost ¢ty = 8s in this experiment). It should
be noticed that the computational time includes the time of
graph construction and label propagation. From Table 1, we
can see that PLCP-INC significantly reduced the computation
burden compared to PLCP, GFHF and LGC. With the round
k increases, the computational cost of all baselines increases
sharply. In contrast, PLCP-INC remains very stable around
0.06s, which satisfies the requirement of online real-time an-
notation.

5. CONCLUSION

In this paper, we proposed a novel graph based SSL approach
named Proxy-based Local Consistency Propagation (PLCP),
which divides the label propagation into two stages. Based
on PLCP, we have developed an incremental learning algo-
rithm that uses the newly added labeled samples to efficiently
update the learned model. Our experiments show that our

algorithm has a promising performance and can satisfy the
requirement of online real-time annotation.
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