
Decorrelated Batch Normalization

Lei Huang†‡∗ Dawei Yang‡ Bo Lang† Jia Deng ‡
†State Key Laboratory of Software Development Environment, Beihang University, P.R.China

‡University of Michigan, Ann Arbor

Abstract

Batch Normalization (BN) is capable of accelerating the
training of deep models by centering and scaling activations
within mini-batches. In this work, we propose Decorre-
lated Batch Normalization (DBN), which not just centers
and scales activations but whitens them. We explore multiple
whitening techniques, and find that PCA whitening causes a
problem we call stochastic axis swapping, which is detrimen-
tal to learning. We show that ZCA whitening does not suffer
from this problem, permitting successful learning. DBN re-
tains the desirable qualities of BN and further improves BN’s
optimization efficiency and generalization ability. We design
comprehensive experiments to show that DBN can improve
the performance of BN on multilayer perceptrons and con-
volutional neural networks. Furthermore, we consistently
improve the accuracy of residual networks on CIFAR-10,
CIFAR-100, and ImageNet.

1. Introduction
Batch Normalization [25] is a technique for accelerating

deep network training. Introduced by Ioffe and Szegedy, it
has been widely used in a variety of state-of-the-art systems
[17, 49, 19, 54, 48, 20]. Batch Normalization works by
standardizing the activations of a deep network within a mini-
batch—transforming the output of a layer, or equivalently
the input to the next layer, to have a zero mean and unit
variance. Specifically, let {xi ∈ R, i = 1, 2, . . . ,m} be
the original outputs of a single neuron on m examples in a
mini-batch. Batch Normalization produces the transformed
outputs

x̂i = γ
xi − µ√
σ2 + ε

+ β, (1)

where µ = 1
m

∑m
j=1 xj and σ2 = 1

m

∑m
j=1(xj−µ)2 are the

mean and variance of the mini-batch, ε > 0 is a small number
to prevent numerical instability, and γ, β are extra learnable
parameters. Crucially, during training, Batch Normalization

∗This work was mainly done while Lei Huang was a visiting student at
the University of Michigan.

is part of both the inference computation (forward pass) as
well as the gradient computation (backward pass). Batch
Normalization can be inserted extensively into a network,
typically between a linear mapping and a nonlinearity.

Batch Normalization was motivated by the well-known
fact that whitening inputs (i.e. centering, decorrelating, and
scaling) speeds up training [32]. It has been shown that bet-
ter conditioning of the covariance matrix of the input leads
to better conditioning of the Hessian in updating the weights,
making the gradient descent updates closer to Newton up-
dates [32, 50]. Batch Normalization exploits this fact further
by seeking to whiten not only the input to the first layer of
the network, but also the inputs to each internal layer in the
network. But instead of whitening, Batch Normalization
only performs standardization. That is, the activations are
centered and scaled, but not decorrelated. Such a choice
was justified in [25] by citing the cost and differentiability
of whitening, but no actual attempts were made to derive or
experiment with a whitening operation.

While standardization has proven effective for Batch Nor-
malization, it remains an interesting question whether full
whitening—adding decorrelation to Batch Normalization—
can help further. Conceptually, there are clear cases where
whitening is beneficial. For example, when the activations
are close to being perfectly1 correlated, standardization
barely improves the conditioning of the covariance matrix,
whereas whitening remains effective. In addition, prior work
has shown that decorrelated activations result in better fea-
tures [3, 43, 5] and better generalization [9, 53], suggesting
room for further improving Batch Normalization.

In this paper, we propose Decorrelated Batch Normaliza-
tion, in which we whiten the activations of each layer within
a mini-batch. Let xi ∈ Rd be the input to a layer for the i-th
example in a mini-batch of size m. The whitened input is
given by

x̂i = Σ− 1
2 (xi − µ), (2)

where µ = 1
m

∑m
j=1 xj is the mini-batch mean and Σ =

1
m

∑m
j=1(xj − µ)(xj − µ)T is the mini-batch covariance

matrix.
1For example, in 2D, this means all points lie close to the line y = x

and Batch Normalization does not change the shape of the distribution.

Several questions arise for implementing Decorrelated
Batch Normalization. One is how to perform back-
propagation, in particular, how to back-propagate through
the inverse square root of a matrix (i.e. ∂Σ− 1

2 /∂Σ), whose
key step is an eigen decomposition. The differentiability of
this matrix transform was one of the reasons that whiten-
ing was not pursued in the Batch Normalization paper [25].
Desjardins et al. [12] whiten the activations but avoid back-
propagation through it by treating the mean µ and the whiten-
ing matrix Σ− 1

2 as model parameters, rather than as func-
tions of the input examples. However, as has been pointed
out [25, 24], doing so may lead to instability in training.

In this work, we decorrelate the activations and perform
proper back-propagation during training. We achieve this by
using the fact that eigen-decomposition is differentiable, and
its derivatives can be obtained using matrix differential cal-
culus, as shown by prior work [15, 26]. We build upon these
existing results and derive the back-propagation updates for
Decorrelated Batch Normalization.

Another question is, perhaps surprisingly, the choice of
how to compute the whitening matrix Σ− 1

2 . The whitening
matrix is not unique because a whitened input stays whitened
after an arbitrary rotation [27]. It turns out that PCA whiten-
ing, a standard choice [13], does not speed up training at
all and in fact inflicts significant harm. The reason is that
PCA whitening works by performing rotation followed by
scaling, but the rotation can cause a problem we call stochas-
tic axis swapping, which, as will be discussed in Section
3.1, in effect randomly permutes the neurons of a layer for
each batch. Such permutation can drastically change the data
representation from one batch to another to the extent that
training never converges.

To address this stochastic axis swapping issue, we dis-
cover that it is critical to use ZCA whitening [4, 27], which
rotates the PCA-whitened activations back such that the
distortion of the original activations is minimal. We show
through experiments that the benefits of decorrelation are
only observed with the additional rotation of ZCA whitening.

A third question is the amount of whitening to perform.
Given a particular batch size, DBN may not have enough
samples to obtain a suitable estimate for the full covariance
matrix. We thus control the extent of whitening by decorre-
lating smaller groups of activations instead of all activations
together. That is, for an output of dimension d, we divide it
into groups of size kG < d and apply whitening within each
group. This strategy has the added benefit of reducing the
computational cost of whitening from O(d2 max(m, d)) to
O(mdkG), where m is the mini-batch size.

We conduct extensive experiments on multilayer per-
ceptrons and convolutional neural networks, and show that
Decorrelated Batch Normalization (DBN) improves upon the
original Batch Normalization (BN) in terms of training speed
and generalization performance. In particular, experiments

demonstrate that using DBN can consistently improve the
performance of residual networks [17, 19, 54] on CIFAR-10,
CIFAR-100 [29] and ILSVRC-2012 [11].

2. Related Work
Normalized activations [35, 51] and gradients [44, 38]

have long been known to be beneficial for training neural
networks. Batch Normalization [25] was the first to per-
form normalization per mini-batch in a way that supports
back-propagation. One drawback of Batch Normalization,
however, is that it requires a reasonable batch size to estimate
the mean and variance, and is not applicable when the batch
size is very small. To address this issue, Ba et al. [2] pro-
posed Layer Normalization, which performs normalization
on a single example using the mean and variance of the acti-
vations from the same layer. Batch Normalization and Layer
Normalization were later unified by Ren et al. under the
Division Normalization framework [39]. Other attempts to
improve Batch Normalization for small batch sizes, include
Batch Renormalization [24] and Stream Normalization [33].
There have also been efforts to adapt Batch Normalization
to Recurrent Neural Networks [31, 10]. Our work extends
Batch Normalization by decorrelating the activations, which
is a direction orthogonal to all these prior works.

Our work is closely related to Natural Neural Net-
works [12, 34], which whiten activations by periodically
estimating and updating a whitening matrix. Our work dif-
fers from Natural Neural Networks in two important ways.
First, Natural Neural Networks perform whitening by treat-
ing the mean and the whitening matrix as model parameters
as opposed to functions of the input examples, which, as
pointed out by Ioffe & Szegedy [25, 24], can cause instabil-
ity in training, with symptoms such as divergence or gradient
explosion. Second, during training, a Natural Neural Net-
work uses a running estimate of the mean and whitening
matrix to perform whitening for each mini-batch; as a result,
it cannot ensure that the transformed activations within each
batch are in fact whitened, whereas in our case the activations
with a mini-batch are guaranteed to be whitened. Natural
Neural Networks thus may suffer instability in training very
deep neural networks [12].

Another way to obtain decorrelated activations is to in-
troduce additional regularization in the loss function [9, 53].
Cogswell et al. [9] introduced the DeCov loss on the acti-
vations as a regularizer to encourage non-redundant repre-
sentations. Xiong et al. [53] extends [9] to learn group-wise
decorrelated representations. Note that these methods are not
designed for speeding up training. In fact, empirically they
often slow down training [9], probably because decorrelated
activations are part of the learning objective and thus may
not be achieved until later in training.

Our approach is also related to work that implicitly
normalizes activations by either normalizing the network

weights—e.g. through re-parameterization techniques [41,
23, 22], Riemannian optimization methods [21, 7], or addi-
tional weight regularization [30, 37, 40]—or by designing
special scaling coefficients and bias values that can induce
normalized activations under certain assumptions [1]. Our
work bears some similarity to that of Huang et al. [22],
which also back-propagates gradients through a ZCA-like
normalization transform that involves eigen-decomposition.
But the work by Huang et al. normalizes weights instead of
activations, which leads to significantly different derivations
especially with regards to convolutional layers; in addition,
unlike ours, it does not involve a separately estimated whiten-
ing matrix during inference, nor does it discuss the stochastic
axis swapping issue. Finally, all of these works including
[22] are orthogonal to ours in the sense that their normaliza-
tion is data independent, whereas ours is data dependent. In
fact, as shown in [23, 7, 22, 21], data-dependent and data-
independent normalization can be combined to achieve even
greater improvement.

3. Decorrelated Batch Normalization
Let X ∈ Rd×m be a data matrix that represents inputs to

a layer in a mini-batch of size m. Let xi ∈ Rd be the i-th
column vector of X, i.e. the d-dimensional input from the
i-th example. The whitening transformation φ : Rd×m →
Rd×m is defined as

φ(X) = Σ−1/2(X− µ · 1T), (3)

where µ = 1
mX · 1 is the mean of X, Σ = 1

m (X − µ ·
1T)(X − µ · 1T)T + εI is the covariance matrix of the
centered X, 1 is a column vector of all ones, and ε > 0 is
a small positive number for numerical stability (preventing
a singular Σ). The whitening transformation φ(X) ensures
that for the transformed data X̂ = φ(X) is whitened, i.e.,
X̂X̂T = I.

Although Eqn. 3 gives an analytical form of the whitening
transformation, this transformation is in fact not unique.
The reason is that Σ−1/2, the inverse square root of the
covariance matrix, is defined only up to rotation, and as a
result there exist infinitely many whitening transformations.
Thus, a natural question is whether the specific choice of
Σ−1/2 matters, and if so, which choice to use.

To answer this question, we first discuss a phenomenon
we call stochastic axis swapping and show that not all whiten-
ing transformations are equally desirable.

3.1. Stochastic Axis Swapping

Given a data point represented as a vector x ∈ Rd under
the standard basis, its representation under another orthogo-
nal basis {d1, ...,dd} is x̂ = DTx, where D = [d1, ...,dd]
is an orthogonal matrix. We define stochastic axis swapping
as follows:

Definition 3.1 Assume a training algorithm that iteratively
update weights using a batch of randomly sampled data
points per iteration. Stochastic axis swapping occurs when
a data point x is transformed to be x̂1 = DT

1 x in one
iteration and x̂2 = DT

2 x in another iteration such that
D1 = PD2 where P 6= I is a permutation matrix solely
determined by the statistics of a batch.

Stochastic axis swapping makes training difficult, because
the random permutation of the input dimensions can greatly
confuse the learning algorithm—in the extreme case where
the permutation is completely random, what remains is only
a bag of activation values (similar to scrambling all pixels
in an image), potentially resulting in an extreme loss of
information and discriminative power.

Here, we demonstrate that the whitening of activations,
if not done properly, can cause stochastic axis swapping in
training neural networks. We start with standard PCA whiten-
ing [13], which computes Σ−1/2 through eigen decomposi-
tion: Σ

−1/2
pca = Λ−1/2DT , where Λ = diag(σ1, . . . , σd) and

D = [d1, ...,dd] are the eigenvalues and eigenvectors of Σ,
i.e. Σ = DΛDT . That is, the original data point (after cen-
tering) is rotated by DT and then scaled by Λ−1/2. Without
loss of generalization, we assume that di is unique by fixing
the sign of its first element. A first opportunity for stochastic
axis swapping is that the columns (or rows) of Λ and D can
be permuted while still giving a valid whitening transforma-
tion. But this is easy to fix—we can commit to a unique Λ
and D by ordering the eigenvalues non-increasingly.

But it turns out that ensuring a unique Λ and D is insuf-
ficient to avoid stochastic axis swapping. Fig. 1 illustrates
an example. Given a mini-batch of data points in one iter-
ation as shown in Fig. 1(a), PCA whitening rotates them
by DT = [dT1 ,d

T
2]T and stretches them along the new axis

system by Λ−1/2 = diag(1/
√
σ1, 1/

√
σ2), where σ1 > σ2.

Considering another iteration shown in Figure 1(b), where all
data points except the red points are the same, it has the same
eigenvectors with different eigenvalues, where σ1 < σ2. In
this case, the new rotation matrix is (D

′
)T = [dT2 ,d

T
1]T

because we always order the eigenvalues non-increasingly.
The blue data points thus have two different representations
with the axes swapped.

To further justify our conjecture, we perform an exper-
iment on multilayer perceptrons (MLPs) over the MNIST
dataset as shown in Figure 2. We refer to the network with-
out whitening activations as ‘plain’ and the network with
PCA whitening as DBN-PCA. We find that DBN-PCA has
significantly inferior performance to ‘plain’. Particularly, on
the 4-layer MLP, DBN-PCA behaves similarly to random
guessing, which implies that it causes severe stochastic axis
swapping.

The stochastic axis swapping caused by PCA whitening
exists because the rotation operation is executed over varied
activations. Such variation is a result of two factors: (1) the

x1

x2

 x2

 x1

x1

x2

 x1

 x2

(a)

x1

x2

 x2

 x1

x1

x2

 x1

 x2

(b)

Figure 1. Illustration that PCA whitening suffers from stochastic
axis swapping. (a) The axis alignment of PCA whitening in the
initial iteration; (b) The axis alignment in another iteration.

0 200 400 600 800 1000

Iterations

0

0.5

1

1.5

2

2.5

3

3.5

T
r
a
i
n
i
n
g

l
o
s
s plain

DBN-PCA
DBN-ZCA

(a) 2 layer MLP

0 200 400 600 800 1000

Iterations

0

0.5

1

1.5

2

2.5

3

3.5

T
r
a
i
n
i
n
g

l
o
s
s plain

DBN-PCA
DBN-ZCA

(b) 4 layer MLP

Figure 2. Illustration of different whitening methods in training an
MLP on MNIST. We use full batch gradient descent and report
the best results with respect to the training loss among learning
rates={0.1, 0.5, 1, 5}. (a) and (b) show the training loss of the 2-
layer and 4-layer MLP, respectively. The number of neurons in each
hidden layer is 100. We refer to the network without whitening
activation as ‘plain‘, with PCA whitening activation as DBN-PCA,
and with ZCA whitening as DBN-ZCA.

activations can change due to weight updates during training,
following the internal covariate shift described in [25]; (2)
the optimization is based on random mini-batches, which
means that each batch will contain a different random set of
examples in each training epoch.

A similar phenomenon is also observed in [22]. In this
work, PCA-style orthogonalization failed to learn orthogonal
filters effectively in neural networks. However, no further
analysis was provided to explain why this is the case.

3.2. ZCA Whitening

To address the stochastic axis swapping problem, one
straightforward idea is to rotate the transformed input back
using the same rotation matrix D:

Σ−1/2 = DΛ−1/2DT . (4)

In other words, we scale along the eigenvectors to get the
whitened activations under the original axis system. Such
whitening is known as ZCA whitening [4], and has been
shown to minimize the distortion introduced by whitening
under L2 distance [4, 27, 22]. We perform the same experi-
ments with ZCA whitening as we did with PCA whitening:
with MLPs on MNIST. Shown in Figure 2, ZCA whitening
(referred to as DBN-ZCA) improves training performance
significantly compared to no whitening (‘plain’) and DBN-
PCA. This shows that ZCA whitening is critical to addressing

the stochastic axis swapping problem.

Back-propagation It is important to note that the back-
propagation through ZCA whitening is non-trivial. In our
DBN, the mean µ and the covariance Σ are not parameters
of the whitening transform φ, but are functions of the mini-
batch data X. We need to back-propagate the gradients
through φ as in [25, 22]. Here, we use the results from [26]
to derive the back-propagation formulations of whitening:

∂L

∂Σ
= D{(KT � (DT ∂L

∂D)) + (∂L∂Λ)diag}DT , (5)

where L is the loss function, K ∈ Rd×d is 0-diagonal with
Kij = 1

σi−σj
[i 6= j], the � operator is element-wise matrix

multiplication, and (∂L∂Λ)diag sets the off-diagonal elements
of ∂L∂Λ as zero. Detailed derivation can be found in the sup-
plementary materials. Here we only show the simplified
formulation:

∂L
∂xi

=
(∂L
∂x̃i
− f + x̃Ti S− x̃Ti M

)
Λ−1/2DT , (6)

where S = 2(KT�(ΛFTc +Λ
1
2FcΛ

1
2))sym, M = (Fc)diag ,

Fc = 1
m (
∑m
i=1

∂L
∂x̃i

T
x̃Ti), and f = 1

m

∑m
i=1

∂L
∂x̃i

. The no-
tation (·)sym represents symmetrizing the corresponding
matrix.

3.3. Training and Inference

Decorrelated Batch Normalization (DBN) is a data-
dependent whitening transformation with back-propagation
formulations. Like Batch Normalization [25], it can be in-
serted extensively into a network. Algorithms 1 and 2 de-
scribe the forward pass and the backward pass of our pro-
posed DBN respectively. During training, the mean µ and
the whitening matrix Σ−1/2 are calculated within each mini-
batch to ensure that the activations are whitened for each
mini-batch. We also maintain the expected mean µE and
the expected whitening matrix Σ

−1/2
E for use during infer-

ence. Specifically, during training, we initialize µE as 0 and
Σ

−1/2
E as I and update them by running average as described

in Line 10 and 11 of Algorithm 1.
Normalizing the activations constrains the model’s capac-

ity for representation. To remedy this, Ioffe and Szegedy
[25] introduce extra learnable parameters γ and β in Eqn. 1.
These learnable parameters often marginally improve the per-
formance in our observation. For DBN, we also recommend
to use learnable parameters. Specifically, the learnable pa-
rameters can be merged into the following ReLU activation
[36], resulting in the Translated ReLU (TReLU) [52].

For a convolutional neural network, the input to the DBN
transformation is XC ∈ Rh×w×d×m where h andw indicate
the height and width of feature maps, and d and m are the
numbers of feature maps and examples respectively. Follow-
ing [25], we view each spatial position of the feature map as

Algorithm 1 Forward pass of DBN for each iteration.
1: Input: mini-batch inputs {xi, i = 1, 2...,m}, expected mean
µE and expected projection matrix Σ

−1/2
E .

2: Hyperparameters: ε, running average momentum λ.
3: Output: the ZCA-whitened activations {x̂i, i = 1, 2...,m}.
4: calculate: µ = 1

m

∑m
j=1 xj .

5: calculate: Σ = 1
m

∑m
j=1(xj − µ)(xj − µ)T + εI.

6: execute eigenvalue decomposition: Σ = DΛDT .
7: calculate PCA-whitening matrix: U = Λ−1/2DT .
8: calculate PCA-whitened activation : x̃i = U(xi − µ).
9: calculate ZCA-whitened output: x̂i = Dx̃i.

10: update: µE ← (1− λ) µE + λ µ.
11: update: Σ

−1/2
E ← (1− λ)Σ

−1/2
E + λDU.

Algorithm 2 Backward pass of DBN for each iteration.
1: Input: mini-batch gradients respect to whitened outputs
{ ∂L
∂x̂i

, i = 1, 2...,m}. Other auxiliary data from respective
forward pass: (1) eigenvalues; (2) x̃; (3) D.

2: Output: the gradients respect to the inputs { ∂L
∂xi

, i =

1, 2...,m}.
3: calculate the gradients respect to x̃: ∂L

∂x̃i
= ∂L

∂x̂i
D.

4: calculate f = 1
m

∑m
i=1

∂L
∂x̃i

T .
5: calculate 0-diagonal K matrix by Kij = 1

σi−σj
[i 6= j].

6: generate diagonal matrix Λ from eigenvalues.
7: calculate Fc = 1

m
(
∑m
i=1

∂L
∂x̃i

T
x̃Ti) and M = (Fc)diag .

8: calculate S = 2(KT � (ΛFTc + Λ
1
2FcΛ

1
2))sym.

9: calculate ∂L
∂xi

by formula 6.

a sample. We thus unroll XC as X ∈ Rd×(mhw) with mhw
examples and d feature maps. The whitening operation is
performed over the unrolled X.

3.4. Group Whitening

As discussed in Section 1, it is necessary to control the
extent of whitening such that there are sufficient examples
in a batch for estimating the whitening matrix. To do this
we use “group whitening”, specifically, we divide the acti-
vations along the feature dimension with size d into smaller
groups of size kG (kG < d) and perform whitening within
each group. The extent of whitening is controlled by the
hyperparameter kG. In the case kG = 1, Decorrelated Batch
Normalization reduces to the original Batch Normalization.

In addition to controlling the extent of whitening, group
whitening reduces the computational complexity [22]. Full
whitening costs O(d2 max(m, d)) for a batch of size m.
When using group whitening, the cost is reduced to
O(d

kG
(k2
G(max(m, kG)))). Typically, we choose kG < m,

therefore the cost of group whitening is O(mdkG).

3.5. Analysis and Discussion

DBN extends BN such that the activations are decorre-
lated over mini-batch data. DBN thus inherits the beneficial
properties of BN, such as the ability to perform efficient
training with large learning rates and very deep networks.
Here, we further highlight the benefits of DBN over BN,
in particular achieving better dynamical isometry [42] and
improved conditioning.

Approximate Dynamical Isometry Saxe et al. [42] in-
troduce dynamical isometry—the desirable property that
occurs when the singular values of the product of Jacobians
lie within a small range around 1. Enforcing this property,
even approximately, is beneficial to training because it pre-
serves the gradient magnitudes during back-propagation and
alleviates the vanishing and exploding gradient problems
[42]. Ioffe and Szegedy [25] find that Batch Normalization
achieves approximate dynamical isometry under the assump-
tion that (1) the transformation between two consecutive
layers is approximately linear, and (2) the activations in each
layer are Gaussian and uncorrelated. Our DBN inherently
satisfies the second assumption, and therefore is more likely
to achieve dynamical isometry than BN.

Improved Conditioning [12] demonstrated that whiten-
ing activations results in a block diagonal Fisher Information
Matrix (FIM) for each layer under certain assumptions [16].
Their experiments show that such a block diagonal structure
in the FIM can improve the conditioning. The proposed
method in [12], however, cannot whiten the activations ef-
fectively, as shown in [34] and also discussed in Section 2.
DBN, on the other hand, does this directly. Therefore, we
conjecture that DBN can further improve the conditioning of
the FIM, and we justify this experimentally in Section 4.1.

4. Experiments
We start with experiments to highlight the effectiveness

of Decorrelated Batch Normalization (DBN) in improving
the conditioning and speeding up convergence on multilayer
perceptrons (MLP). We then conduct comprehensive exper-
iments to compare DBN and BN on convolutional neural
networks (CNNs). In the last section, we apply our DBN
to residual networks on CIFAR-10, CIFAR-100 [29] and
ILSVRC-2012 to show its power to improve modern network
architectures. The code to reproduce the experiments is avail-
able at https://github.com/huangleiBuaa/DecorrelatedBN.

We focus on classification tasks and the loss function is
the negative log-likelihood: − logP (y|x). Unless otherwise
stated, we use random weight initialization as described in
[32] and ReLU activations [36].

4.1. Ablation Studies on MLPs

In this section, we verify the effectiveness of our proposed
method in improving conditioning and speeding up conver-

0 50 100 150

Iterations (x20)

100

1050

C
o
n
d
i
t
i
o
n

n
u
m
b
e
r

o
f

F
I
M

plain
NNN
LN
BN
DBN

(a)

0 100 200 300 400 500

Time/s

0

1

2

3

4

T
r
a
i
n
i
n
g

l
o
s
s

plain
NNN
LN
BN
DBN

(b)

Figure 3. Conditioning analysis with MLPs trained on the Yale-
B dataset. (a) Condition number (log-scale) of relative FIM as a
function of updates in the last layer; (b) training loss with respect
to wall clock time.

0 500 1000 1500 2000

Iterations

0

1

2

3

4

T
r
a
i
n
i
n
g

l
o
s
s

G1
G8
G16
G32
G64
G128

(a)

0 20 40 60 80 100

Time/s

0

1

2

3

4

T
r
a
i
n
i
n
g

l
o
s
s

plain
NNN
LN
BN
DBN

(b)

Figure 4. Experiments on MLP architecture over PIE dataset. (a)
The effects of group size of DBN, where ’Gn’ indicates kG = n;
(b) Comparison of training loss with respect to wall clock time.

gence on MLPs. We also discuss the effect of the group size
on the tradeoff between the performance and computation
cost. We compare against several baselines, including the
original network without any normalization (referred to as
‘plain’), Natural Neural Networks (NNN) [12], Layer Nor-
malization (LN) [2], and Batch Normalization (BN) [25].
All results are averaged over 5 runs.

Conditioning Analysis We perform conditioning analysis
on the Yale-B dataset [14], specifically, the subset [6] with
2,414 images and 38 classes. We resize the images to 32×32
and reshape them as 1024-dimensional vectors. We then con-
vert the images to grayscale in the range [0, 1] and subtract
the per-pixel mean.

For each method, we train a 5-layer MLP with the num-
bers of neurons in each hidden layer={128, 64, 48, 48} and
use full batch gradient descent. Hyper-parameters are se-
lected by grid search based on the training loss. For all meth-
ods, the learning rate is chosen from {0.1, 0.2, 0.5, 1, 2}.
For NNN, the revised term ε is one of {0.001, 0.01, 0.1, 1}
and the natural re-parameterization interval T is one of
{20, 50, 100, 200, 500}.

We evaluate the condition number of the relative Fisher
Information Matrix (FIM) [47] with respect to the last layer.
Figure 3 (a) shows the evolution of the condition number
over training iterations. Figure 3 (b) shows the training loss
over the wall clock time. Note that the experiments are
performed on CPUs and the model with DBN is 2× slower
than the model with BN per iteration. From both figures,
we see that NNN, LN, BN and DBN converge faster, and
achieve better conditioning compared to ‘plain’. This shows

that normalization is able to make the optimization problem
easier. Also, DBN achieves the best conditioning compared
to other normalization methods, and speeds up convergence
significantly.

Effects of Group Size As discussed in Section 3.4, the
group size kG controls the extent of whitening. Here we
show the effects of the hyperparameter kG on the perfor-
mance of DBN. We use a subset [6] of the PIE face recog-
nition [45] dataset with 68 classes with 11,554 images. We
adopt the same pre-processing strategy as with Yale-B.

We trained a 6-layer MLP with the numbers of neurons
in each hidden layer={128, 128, 128, 128, 128}. We use
Stochastic Gradient Descent (SGD) with a batch size of
256. Other configurations are chosen in the same way as the
previous experiment. Additionally, we explore group sizes
in {1, 8, 16, 32, 64, 128} for DBN. Note that when kG = 1,
DBN is reduced to the original BN without the extra learn-
able parameters.

Figure 4 (a) shows the training loss of DBN with different
group sizes. We find that the largest (G128) and smallest
group sizes (G1) both have noticeably slower convergence
compared to the ones with intermediate group sizes such as
G16. These results show that (1) decorrelating activations
over a mini-batch can improve optimization, and (2) con-
trolling the extent of whitening is necessary, as the estimate
of the full whitening matrix might be poor over mini-batch
samples. Also, the eigendecomposition with small group
sizes (e.g. 16) is less computationally expensive. We thus
recommend using group whitening in training deep models.

We also compared DBN with group whitening (kG = 16)
to other baselines and the results are shown in Figure 4 (b).
We find that DBN converges significantly faster than other
normalization methods.

4.2. Experiments on CNNs

We design comprehensive experiments to evaluate the
performance of DBN with CNNs against BN, the state-of-
the-art normalization technique. For these experiments we
use the CIFAR-10 dataset [29], which contains 10 classes,
50k training images, and 10k test images.

4.2.1 Comparison of DBN and BN

We compare DBN to BN over different experimental con-
figurations, including the choice of optimization method,
non-linearities, and the position of DBN/BN in the network.
We adopt the VGG-A architecture [46] for all experiments,
and pre-process the data by subtracting the per-pixel mean
and dividing by the variance.

We use SGD with a batchsize of 256, momentum of 0.9
and weight decay of 0.0005. We decay the learning rate by
half every T iterations. The hyper-parameters are chosen
by grid search over a random validation set of 5k examples

0 20 40 60 80

Epochs

0

10

20

30

40

E
r
r
o
r

(
%
)

BN-train
DBN-train
BN-test
DBN-test

(a) Basic Configuration

0 20 40 60 80

Epochs

0

10

20

30

40

E
r
r
o
r

(
%
)

BN-train
DBN-train
BN-test
DBN-test

(b) Adam optimization

0 20 40 60 80

Epochs

0

10

20

30

40

E
r
r
o
r

(
%
)

BN-train
DBN-train
BN-test
DBN-test

(c) ELU non-linearity

0 20 40 60 80

Epochs

0

10

20

30

40

E
r
r
o
r

(
%
)

BN-train
DBN-train
BN-test
DBN-test

(d) DBN/BN after non-linearity

Figure 5. Comprehensive performance comparison between DBN and BN with the VGG-A architecture on CIFAR-10. We show the training
accuracy (solid line) and test accuracy (line marked with plus) for each epoch.

0 50 100 150
epoch

0

10

20

30

40

50

t
r
a
i
n

e
r
r
o
r

(
%
) DBN-20L

DBN-32L
DBN-44L
BN-20L
BN-32L
BN-44L

(a) Deeper Networks

0 50 100 150 200
epoch

0

20

40

60

80

100

t
r
a
i
n

e
r
r
o
r

(
%
) DBN-20L

DBN-32L
DBN-44L
BN-20L
BN-32L
BN-44L

(b) 4× Learning Rate

Figure 6. DBN can make optimization easier and benefits from a
higher learning rate. Results are reported on the S-plain architecture
over the CIFAR-10 dataset. (a) Comparison by varying the depth
of network. ’-nL’ means the network has n layers; (b) Comparison
by using a higher learning rate.

taken from the training set. The grid search includes the
initial learning rate lr = {1, 2, 4, 8} and the decay interval
T = {1000, 2000, 4000, 8000}. We set the group size of
DBN as kG = 16. Figure 5 (a) compares the performance
of BN and DBN under this configuration.

We also experiment with other configurations, including
using (1) Adam [28] as the optimization method, (2) replac-
ing ReLU with another widely used non-linearity called Ex-
ponential Linear Units (ELU) [8], and (3) inserting BN/DBN
after the non-linearity. All the experimental setups are other-
wise the same, except that Adam [28] is used with an initial
learning rate in {0.001, 0.005, 0.01, 0.05}. The respective
results are shown in Figure 5 (b), (c) and (d).

In all configurations, DBN converges faster with respect
to the epochs and generalizes better, compared to BN. Par-
ticularly, in the four experiments above, DBN reduces the
absolute test error by 0.61%, 1.34%, 1.44% and 0.38% re-
spectively. The results demonstrate that our Decorrelated
Batch Normalization outperforms Batch Normalization in
terms of optimization quality and regularization ability.

4.2.2 Analyzing the Properties of DBN

We conduct experiments to support the conclusions from
Section 3.5, specifically that DBN has better stability and
converges faster than BN with high learning rates in very
deep networks. The experiments were conducted on the
S-plain network, which follows the design of the residual
network [18] but removes the identity maps and uses the
same feature maps for simplicity.

Method Res-20 Res-32 Res-44 Res-56
Baseline* 8.75 7.51 7.17 6.97
Baseline 7.94 7.31 7.17 7.21
DBN-L1 7.94 7.28 6.87 6.63
DBN-scale-L1 7.77 6.94 6.83 6.49

Table 1. Comparison of test errors (%) with residual networks on
CIFAR-10. ‘Res-L’ indicates residual network with L layers, and
‘Baseline*’ indicates the results reported in [17] with only one run.
Our results are averaged over 5 runs.

Going Deeper He et al. [18] addressed the degradation
problem for the network without identity mappings: that
is, when the network depth increases, the training accuracy
degrades rapidly, even when Batch Normalization is used.
In our experiments, we demonstrate that DBN will relieve
this problem to some extent. In other words, a model with
DBN is easier to optimize. We validate this on the S-plain
architecture with feature maps of dimension d = 48 and
number of layers 20, 32 and 44. The models are trained
with a mini-batch size of 128, momentum of 0.9 and weight
decay of 0.0005. We set the initial learning rate to be 0.1,
dividing it by 5 at 80 and 120 epochs, and end training at 160
epochs. The results in Figure 6 (a) show that, with increased
depth, the model with BN was more difficult to optimize than
with DBN. We conjecture that the approximate dynamical
isometry of DBN alleviates this problem.

Higher Learning Rate A network with Batch Normaliza-
tion can benefit from high learning rates, and thus faster train-
ing, because it reduces internal covariate shift [25]. Here, we
show that DBN can help even more. We train the networks
with BN and DBN with a 4× higher learning rate — 0.4. We
use the S-plain architecture with feature maps of dimensions
d = 42 and divide the learning rate by 5 at 60, 100, 140,
and 180 epochs. The results in Figure 6 (b) show that DBN
has significantly better training accuracy than BN. We argue
that DBN benefits from higher learning rates because of its
property of improved conditioning.

4.3. Applying DBN to Residual Network in Practice

Due to our current un-optimized implementation of DBN,
it would incur a high computational cost to replace all BN

CIFAR-10 CIFAR-100
Method Baseline* [54] Baseline DBN-scale-L1 Baseline* [54] Baseline DBN-scale-L1

WRN-28-10 3.89 3.99 ± 0.13 3.79 ± 0.09 18.85 18.75 ± 0.28 18.36 ± 0.17
WRN-40-10 3.80 3.80 ± 0.11 3.74 ± 0.11 18.3 18.7 ± 0.22 18.27 ± 0.19

Table 2. Test errors (%) on wide residual networks over CIFAR-10 and CIFAR-100. ‘Baseline’ and ‘DBN-scale-L1’ refer to the the results
we perform, based on the released code of paper [54], and the results are shown in the format of ‘mean ±std’ computed over 5 random
seeds. ‘Baseline*’ refers to the results reported by authors of [54] on their Github. They report the median of 5 runs on WRN-28-10 and
only perform one run on WRN-40-10.

modules of a network with DBN2. We instead only decorre-
late the activations among a subset of layers. We find that
this in practice is already effective for residual networks
[17], because the information in previous layers can pass
directly to the later layers through the identity connections.
We also show that we can improve upon residual networks
[17, 19, 54] by using only one DBN module before the first
residual block, which introduces negligible computation cost.
In principle, an optimized implementation of DBN will be
much faster, and could be injected in multiple places in
the network with little overhead. However, optimizing the
implementation of DBN is beyond the scope of this work.

Residual Network on CIFAR-10 We apply our method
on residual networks [17] by using only one DBN module
before the first residual block (denoted as DBN-L1). We
also consider DBN with adjustable scale (denoted as DBN-
scale-L1) as discussed in Section 3.3. We adopt the Torch
implementation of residual networks3 and follow the same
experimental protocol as described in [17]. We train the
residual networks with depth 20, 32, 44 and 56 on CIFAR-10.
Table 1 shows the test errors of these networks. Our methods
obtain lower test errors compared to BN over all 4 networks,
and the improvement is more dramatic for deeper networks.
Also, we see that DBN-scale-L1 marginally outperforms
DBN-L1 in all cases. Therefore, we focus on comparing
DBN-scale-L1 to BN in later experiments.

Wide Residual Network on CIFAR We apply DBN to
Wide Residual Network (WRN) [54] to improve the per-
formance on CIFAR-10 and CIFAR-100. Following the
convention set in [54], we use the abbreviation WRN-d-k to
indicate a WRN with depth d and width k. We again adopt
the publicly available Torch implementation4 and follow the
same setup as in [54]. The results in Table 2 show that DBN
improves the original WRN on both datasets and both net-
works. In particular, we reduce the test error by 3.74% and
18.27% on CIFAR-10 and CIFAR-100, respectively.

Residual Network on ILSVRC-2012 We further validate
the scalability of our method on ILSVRC-2012 with 1000
classes [11]. We use the given official 1.28M training images

2See the supplementary material for more details on computational cost.
3https://github.com/facebook/fb.resnet.torch
4https://github.com/szagoruyko/wide-residual-networks

Res-50 Res-101
Method Top-1 Top-5 Top-1 Top-5

Baseline* 24.70 7.80 23.60 7.10
Baseline 24.87 7.58 22.54 6.38

DBN-scale-L1 24.29 7.08 22.17 6.09

Table 3. Comparison of test errors (%, single model and single-
crop) on 50 and 101-layer residual networks on ILSVRC-2012.
‘Baseline*’ indicates that the results are obtained from the website:
https://github.com/KaimingHe/deep-residual-networks

as a training set, and evaluate the top-1 and top-5 classifica-
tion errors on the validation set with 50k images. We use
the 50 and 101-layer residual network (Res-50 and Res-101)
and perform single model and single-crop testing. We follow
the same experimental setup as described in [17], except
that we used 4 GPUs instead of 8 GPUs for training Res-50:
we apply SGD with a mini-batch size of 256 over 4 GPUs
for Res-50 and 8 GPUs for Res-101, momentum of 0.9 and
weight decay of 0.0001; we set the initial learning rate of 0.1,
dividing it by 10 at 30 and 60 epochs, and end the training
at 90 epochs. The results are shown in Table 3. We can see
that the DBN-scale-L1 achieves lower test errors compared
to the original residual networks.

Conclusions

In this paper, we propose Decorrelated Batch Normaliza-
tion (DBN), which extends Batch Normalization to include
whitening over mini-batch data. We find that PCA whitening
can sometimes be detrimental to training because it causes
stochastic axis swapping, and demonstrate that it is critical to
use ZCA whitening, which avoids this issue. DBN retains the
advantages of Batch Normalization while using decorrelated
representations to further improve models’ optimization ef-
ficiency and generalization abilities. This is because DBN
can maintain approximate dynamical isometry and improve
the conditioning of the Fisher Information Matrix. These
properties are experimentally validated, suggesting DBN has
great potential to be used in designing DNN architectures.

Acknowledgement This work was partially supported by
China Scholarship Council, NSFC-61370125 and SKLSDE-
2017ZX-03. We also thank Jonathan Stroud and Lanlan Liu
for their help with proofreading and editing.

References
[1] D. Arpit, Y. Zhou, B. U. Kota, and V. Govindaraju. Normal-

ization propagation: A parametric technique for removing
internal covariate shift in deep networks. In ICML, volume 48
of JMLR Workshop and Conference Proceedings, pages 1168–
1176. JMLR.org, 2016. 3

[2] L. J. Ba, R. Kiros, and G. E. Hinton. Layer normalization.
CoRR, abs/1607.06450, 2016. 2, 6

[3] H. B. Barlow. Possible principles underlying the transfor-
mations of sensory messages, pages 217–234. MIT Press,
Cambridge, MA, 1961. 1

[4] A. J. Bell and T. J. Sejnowski. The ”independent compo-
nents” of natural scenes are edge filters. Vision research,
37(23):3327–3338, Dec. 1997. 2, 4

[5] Y. Bengio and J. S. Bergstra. Slow, decorrelated features
for pretraining complex cell-like networks. In Advances in
Neural Information Processing Systems 22, pages 99–107.
2009. 1

[6] D. Cai, X. He, Y. Hu, J. Han, and T. Huang. Learning a
spatially smooth subspace for face recognition. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition Machine
Learning (CVPR’07), 2007. 6

[7] M. Cho and J. Lee. Riemannian approach to batch normal-
ization. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, pages
5225–5235. Curran Associates, Inc., 2017. 3

[8] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus).
2016. 7

[9] M. Cogswell, F. Ahmed, R. B. Girshick, L. Zitnick, and D. Ba-
tra. Reducing overfitting in deep networks by decorrelating
representations. In ICLR, 2016. 1, 2

[10] T. Cooijmans, N. Ballas, C. Laurent, and A. C. Courville.
Recurrent batch normalization. In ICLR, 2017. 2

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR, 2009. 2, 8

[12] G. Desjardins, K. Simonyan, R. Pascanu, and k. kavukcuoglu.
Natural neural networks. In Advances in Neural Information
Processing Systems 28, pages 2071–2079, 2015. 2, 5, 6

[13] G. Desjardins, K. Simonyan, R. Pascanu, and
K. Kavukcuoglu. Natural neural networks. In Pro-
ceedings of the 28th International Conference on Neural
Information Processing Systems, NIPS’15, pages 2071–2079,
2015. 2, 3

[14] A. Georghiades, P. Belhumeur, and D. Kriegman. From few
to many: Illumination cone models for face recognition under
variable lighting and pose. IEEE Trans. Pattern Anal. Mach.
Intelligence, 23(6):643–660, 2001. 6

[15] M. B. Giles. Collected Matrix Derivative Results for Forward
and Reverse Mode Algorithmic Differentiation. 2008. 2

[16] R. B. Grosse and J. Martens. A kronecker-factored approxi-
mate fisher matrix for convolution layers. In ICML, volume 48
of JMLR Workshop and Conference Proceedings, pages 573–
582. JMLR.org, 2016. 5

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In arXiv prepring arXiv:1506.01497,
2015. 1, 2, 7, 8

[18] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In ICCV. IEEE Computer Society, 2015. 7

[19] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In B. Leibe, J. Matas, N. Sebe, and
M. Welling, editors, Computer Vision – ECCV 2016, pages
630–645, Cham, 2016. Springer International Publishing. 1,
2, 8

[20] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected
convolutional networks. CoRR, abs/1608.06993, 2016. 1

[21] L. Huang, X. Liu, B. Lang, and B. Li. Projection based
weight normalization for deep neural networks. CoRR,
abs/1710.02338, 2017. 3

[22] L. Huang, X. Liu, B. Lang, A. W. Yu, Y. Wang, and B. Li. Or-
thogonal weight normalization: Solution to optimization over
multiple dependent stiefel manifolds in deep neural networks.
In AAAI, 2018. 3, 4, 5

[23] L. Huang, X. Liu, Y. Liu, B. Lang, and D. Tao. Centered
weight normalization in accelerating training of deep neural
networks. In ICCV, 2017. 3

[24] S. Ioffe. Batch renormalization: Towards reducing mini-
batch dependence in batch-normalized models. CoRR,
abs/1702.03275, 2017. 2

[25] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, 2015. 1, 2, 4, 5, 6, 7

[26] C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep
networks with structured layers by matrix backpropagation.
In Proceedings of International Conference on Computer
Vision, ICCV 2015, 2015. 2, 4

[27] A. Kessy, A. Lewin, and K. Strimmer. Optimal whitening and
decorrelation. The American Statistician, 0(ja):0–0, 2017. 2,
4

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. 7

[29] A. Krizhevsky. Learning multiple layers of features from tiny
images. Technical report, 2009. 2, 5, 6

[30] A. Krogh and J. A. Hertz. A simple weight decay can improve
generalization. In NIPS. 1992. 3

[31] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and Y. Bengio.
Batch normalized recurrent neural networks. In 2016 IEEE
International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2016, pages 2657–2661, 2016. 2

[32] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Effiicient
backprop. In Neural Networks: Tricks of the Trade, This Book
is an Outgrowth of a 1996 NIPS Workshop, pages 9–50, 1998.
1, 5

[33] Q. Liao, K. Kawaguchi, and T. Poggio. Streaming normaliza-
tion: Towards simpler and more biologically-plausible nor-
malizations for online and recurrent learning. arXiv preprint
arXiv:1610.06160, 2016. 2

[34] P. Luo. Learning deep architectures via generalized whitened
neural networks. In Proceedings of the 34th International

Conference on Machine Learning, pages 2238–2246, 2017.
2, 5

[35] G. Montavon and K.-R. Müller. Deep Boltzmann Machines
and the Centering Trick, volume 7700 of LNCS. Springer,
2nd edn edition, 2012. 2

[36] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning ICML 2010,
2010. 4, 5

[37] B. Neyshabur, R. Salakhutdinov, and N. Srebro. Path-sgd:
Path-normalized optimization in deep neural networks. In An-
nual Conference on Neural Information Processing Systems
NIPS 2015, pages 2422–2430, 2015. 3

[38] T. Raiko, H. Valpola, and Y. LeCun. Deep learning made eas-
ier by linear transformations in perceptrons. In International
Conference on Artificial Intelligence and Statistics (AISTATS),
pages 924–932, 2012. 2

[39] M. Ren, R. Liao, R. Urtasun, F. H. Sinz, and R. S. Zemel. Nor-
malizing the normalizers: Comparing and extending network
normalization schemes. 2017. 2

[40] P. Rodrı́guez, J. Gonzàlez, G. Cucurull, J. M. Gonfaus, and
F. X. Roca. Regularizing cnns with locally constrained decor-
relations. 2017. 3

[41] T. Salimans and D. P. Kingma. Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural
networks. CoRR, abs/1602.07868, 2016. 3

[42] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions
to the nonlinear dynamics of learning in deep linear neural
networks. CoRR, abs/1312.6120, 2013. 5

[43] J. Schmidhuber. Learning factorial codes by predictability
minimization. Neural Computation, 4(6):863–879, 1992. 1

[44] N. N. Schraudolph. Accelerated gradient descent by factor-
centering decomposition. Technical report, 1998. 2

[45] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumina-
tion, and expression (pie) database. In Proceedings of the
Fifth IEEE International Conference on Automatic Face and
Gesture Recognition, FGR ’02, pages 53–, 2002. 6

[46] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. 6

[47] K. Sun and F. Nielsen. Relative natural gradient for learning
large complex models. CoRR, abs/1606.06069, 2016. 6

[48] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on
learning. CoRR, abs/1602.07261, 2016. 1

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
CoRR, abs/1512.00567, 2015. 1

[50] S. Wiesler and H. Ney. A convergence analysis of log-linear
training. In NIPS, pages 657–665, 2011. 1

[51] S. Wiesler, A. Richard, R. Schlüter, and H. Ney. Mean-
normalized stochastic gradient for large-scale deep learning.
In ICASSP, pages 180–184. IEEE, 2014. 2

[52] S. Xiang and H. Li. On the effects of batch and weight
normalization in generative adversarial networks. CoRR,
abs/1704.03971, 2017. 4

[53] W. Xiong, B. Du, L. Zhang, R. Hu, and D. Tao. Regularizing
deep convolutional neural networks with a structured decorre-
lation constraint. In IEEE 16th International Conference on
Data Mining, ICDM 2016, 2016. 1, 2

[54] S. Zagoruyko and N. Komodakis. Wide residual networks.
CoRR, abs/1605.07146, 2016. 1, 2, 8

